48 6597cd60-ab39-4eae-8311-c40102d8cb87 2018_1 5 2 8 https://doi.org/10.1186/s40168-018-0416-5 Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia 2 2018 Rosa MA, Supali T, Gankpala L, Djuardi Y, Sartono E, Zhou Y, Fischer K, Martin J, Tyagi R, Bolay FK, Fischer PU, Yazdanbakhsh M, Mitreva M true 6 PRJNA407815 1 1 1 This study investigated conserved microbial signatures positively or negatively associated with soil-transmitted helminth infections across Liberia and Indonesia; in addition, longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The main compositional alterations detected in the faecal microbiota of infected individuals were as follows: - Succinivibrio expanded in all helminth-infected individuals, irrespective of species of infecting parasites; - Solobacterium expanded in Necator and Trichuris-infected individuals - Desulfovibrio expanded in Ascaris and Trichuris-infected individuals - Four Firmicutes and one unclassified Bacteroidetes, including Allobaculum, expanded in Ascaris and Necator-infected individuals - Lachnospiraceae negatively associated with infection by Ascaris and Necator - Rhodococcus negatively associated with infection by Ascaris and Trichuris - Olsenella, Flavonifractor, and Enterococcus, Erysipelotrichaceae expanded in all infected individuals - Clostridium IV and Collinsella positively associated with infection in individuals from Liberia (but not from Indonesia). Anthelmintic treatment resulted in expanded Enterococcus, Pseudomonadales, Flavobacteriaceae, Sphingobacteriaceae and reduced Ochrobactrum. Deworming resulted in expanded Sphingobacterium, Deltaproteobacteria, Erysipelotrichaceae and reduced Prevotellaceae, Sutterellaceae, Leuconostocaceae and Butyricimonas. Self-clearance resulted in expanded Bacteroidales families, with Turicibacter negatively associated with baseline infection. Akkermansia and its parent phylogeny, as well as Ruminococcus, significantly associated with incomplete worm clearance or reinfection. 14,18 8,29,32,37,42,74,89,104 3,9 <_link_ParasiteSpecies>19,9,3 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-18T15:20:05.78+00:00 2019-06-25T13:03:17.37+00:00 true 49 8cde7e67-b9f0-44dc-9aba-04357e54b87f 2018_2 1 1 8 https://doi.org/10.1038/s41598-018-30412-x Schistosoma mansoni infection is associated with quantitative and qualitative modi cations of the mammalian intestinal microbiota 22 2018 Timothy P. Jenkins, Laura E. Peachey, Nadim J. Ajami, Andrew S. MacDonald, Michael H. Hsieh, Paul J. Brindley, Cinzia Cantacessi, Gabriel Rinaldi true 3 10.17632/y8c7vpc8zp.1 2 2 1 ↓Alpha diversity, ↑beta diversity 11,21 29 13 2,6,15,23,24 16 1,2 <_link_ParasiteSpecies>20 <_link_InfectedSpecies>1 <_link_SampleSite>8 <_link_SampleType>8 2019-06-18T15:32:43.65+00:00 false 50 3a7de6e6-d4b7-48fc-b93d-1d01f1751741 2010_1 1 1 64 https://doi.org/10.1002/ibd.21299 Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus 10 2010 Walk ST, Blum AM, Ang-Sheng S, Weinstock JV, Young VB false 5 N/A (qPCR) 0 0 0 This study investigated changes in the composition of the ileal and coecal microbiota of C57BL/6 mice infected with Heligmosomoides polygyrus, using samples collected 2 weeks post-experimental infection. 6,14,19 <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleSite>2,2048 <_link_SampleType>16 2019-06-18T19:10:45.82+00:00 2019-06-25T15:52:22.74+00:00 true 51 e1ce85ff-febb-4600-9b14-7e7f21294216 2011_1 2 1 4 https://doi.org/10.1371/journal.pone.0024417 Metagenome plasticity of the bovine abomasal microbiota in immune animals in response to Ostertagia ostertagi Infection 20 2011 Li RW, Wu S, Li W, Huang Y, Gasbarre LC true 6 PRJNA518072 0 0 0 This study characterized the abomasal microbiota composition of cattle partially immune to Ostertagia ostertagi infection in response to reinfection. 46,102 <_link_ParasiteSpecies>2 <_link_InfectedSpecies>2 <_link_SampleSite>16 <_link_SampleType>8 2019-06-18T19:16:35.35+00:00 2019-06-25T15:49:31.68+00:00 true 52 8b7c0e8c-2f20-4ed3-8415-cf1d9fc1d970 2012_1 3 1 8 https://doi.org/10.1371/journal.ppat.1003000 Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon 19 2012 Broadhurst MJ, Ardeshir A, Kanwar B, Mirpuri J, Gundra UM, Leung JM, Wiens KE, Vujkovic-Cvijin I, Kim CC, Yarovinsky F, Lerche NW, McCune JM, Loke P true 5 N/A 1 1 0 The study investigated the effects of experimental infection of captive rhesus monkeys with Trichuris trichiura on the composition of microbial communities attached to the intestinal mucosa, and established correlations between such changes and the amelioration of clinical signs of idiopathic chronic diarrhoea. 2,11,29,36 13,83,92 2,5,8 3,15 <_link_ParasiteSpecies>3 <_link_InfectedSpecies>3 <_link_SampleSite>128 <_link_SampleType>64,256 2019-06-18T19:23:33.32+00:00 2019-07-05T09:35:45.26+00:00 true 53 29333887-5ac9-48eb-bb3d-d6436ffbbac8 2012_2 4 1 16 https://doi.org/10.1371/journal.pone.0035470 Worm burden-dependent disruption of the porcine colon microbiota by Trichuris suis infection 20 2012 Wu S, Li RW, Li W, Beshah E, Dawson HD, Urban JF Jr true 4 4474250.3 to 4474257.3, 4474259.3, 4474261.3 and 4474262.3 0 0 0 This study characterised the microbiota composition of the porcine proximal colon in response to Trichuris suis infection, 53 days post-parasite inoculation. 4,19,22,39,48,49,72,92,98,107,108 8,11,14,15 <_link_ParasiteSpecies>4 <_link_InfectedSpecies>4 <_link_SampleSite>128 <_link_SampleType>8 2019-06-18T19:30:29.71+00:00 2019-06-25T15:43:37.8+00:00 true 54 1e9b8ff7-6e52-46d8-ab05-523e42fc7155 2012_3 4 1 64 https://doi.org/10.1128/IAI.00141-12 Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis 1 2012 Li RW, Wu S, Li W, Navarro K, Couch RD, Hill D, Urban JF Jr. true 6 PRJNA518074 0 0 0 This study characterised the microbiota composition of the porcine proximal colon in response to Trichuris suis infection, 21 days post-parasite inoculation. 11,18,33,37,39,47,70,75,76,81,83,92,94,95,98,99,104 5 <_link_ParasiteSpecies>4 <_link_InfectedSpecies>4 <_link_SampleSite>128 <_link_SampleType>8 2019-06-18T19:44:24.7+00:00 2019-07-04T11:54:21+00:00 true 55 492a1395-4be4-4854-903b-df4c5eabcbba 2013_1 5 2 4 https://doi.org/10.1371/journal.pone.0076573 Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota 20 2013 Cooper P, Walker AW, Reyes J, Chico M, Salter SJ, Vaca M, Parkhill J true 2 ERP002465 2 2 0 This study characterised the faecal microbiota of 97 children, ie. 30 uninfected, 17 infected with Trichuris trichiura, and 50 with T. trichiura and Ascaris lumbricoides from Ecuador. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. 29,101 <_link_InfectedSpecies>5 2019-06-20T09:41:55.75+00:00 2019-06-25T15:37:49.19+00:00 true 56 bf7455f2-2345-4312-87e2-cea880968e3a 2013_2 1 1 128 https://doi.org/10.1371/journal.pone.0074026 Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract 20 2013 Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S true 5 N/A 0 0 0 This study investigated intestinal microbiota changes in the ileum, cecum and colon of C57BL/6 mice infected my Heligmosomoides polygyrus at 14 days post-nematode infection. The altered microbiota composition was independent of the IL-4/-13 - STAT6 signaling axis, as infected IL-4Rα(-/-) mice showed a similar increase in enterobacterial loads. 14 12 13,58 <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleSite>2,128,2048 <_link_SampleType>8 2019-06-20T09:48:10.19+00:00 2019-06-25T15:34:52.69+00:00 true 57 05e5beb4-6d63-428b-9f6e-3d75fc24d876 2013_3 7 1 4 https://doi.org/10.1096/fj.13-232751 Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome 23 2013 Plieskatt JL, Deenonpoe R, Mulvenna JP, Krause L, Sripa B, Bethony JM, Brindley PJ true 6 PRJNA188112 1 1 0 This study characterised differences in microbiota composition of bile and colorectal contents of Syrian golden hamsters 6 weeks post-experimental infection by Opisthorchis viverrini. 14,16,18,19,32,36 1,58,79,85 14 <_link_ParasiteSpecies>7 <_link_InfectedSpecies>7 <_link_SampleSite>512,1024 <_link_SampleType>8 2019-06-20T09:52:19.4+00:00 2019-07-04T11:57:29.39+00:00 true 58 cd06c96f-8f54-44f5-8b91-33b68e983bde 2014_1 5 2 8 https://doi.org/10.1371/journal.pntd.0002880 Helminth colonization is associated with increased diversity of the gut microbiota 18 2014 Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, Cox LM, Gundra UM, Cho I, Bonneau R, Blaser MJ, Chua KH, Loke P true 5 N/A 1 1 0 This compared the composition and diversity of bacterial communities from the fecal microbiota of 51 people from two villages in Malaysia, of which 36 were infected by helminths. Helminth-colonized individuals had greater species richness and number of observed OTUs with enrichment of Paraprevotellaceae, especially with Trichuris infection. 2,17,20 3,27,37 17,25 2,3,19 <_link_ParasiteSpecies>8 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T09:58:11.98+00:00 2019-07-04T11:59:22.47+00:00 true 59 0dd86c44-3c80-428d-bfbc-69910745138c 2014_2 5 1 4 https://doi.org/10.1093/infdis/jiu256 Impact of experimental hookworm infection on the human gut microbiota 24 2014 Cantacessi C, Giacomin P, Croese J, Zakrzewski M, Sotillo J, McCann L, Nolan MJ, Mitreva M, Krause L, Loukas A true 6 SRP041283 0 0 0 This study characterized the differences in composition and relative abundance of fecal microbial communities in human subjects prior to and 8 weeks following experimental infection with Necator americanus. <_link_ParasiteSpecies>9 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T10:02:52.23+00:00 2019-06-25T14:54:06.32+00:00 true 60 18b0e7d7-4506-41d5-820c-905bfb50f73d 2014_3 1 1 64 https://doi.org/10.4161/gmic.32155 Commensal–pathogen interactions in the intestinal tract: Lactobacilli promote infection with, and are promoted by, helminth parasites 9 2014 Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, Redpath SA, Valdez Y, Yebra MJ, Finlay BB, Maizels RM true 5 N/A (clone library) 0 0 0 This study showed that abundance of Lactobacillus bacteria correlates positively with infection with Heligmosomoides polygyrus, as well as with heightened regulatory T cell (Treg) and Th17 responses. H. polygyrus infection raised Lactobacillus species abundance in the duodenum of susceptible C57BL/6 mice, but not in relatively resistant BALB/c mice. Experimental administration of Lactobacillus taiwanensis to BALB/c mice elevates regulatory T cell frequencies and results in greater helminth establishment. 12,19 <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleSite>32 <_link_SampleType>2,8 2019-06-20T10:06:41.97+00:00 2019-06-25T14:49:00.34+00:00 true 61 9e8949ea-c9ce-47bb-b94d-86aa4a31a8bb 2015_1 5 1 4 https://doi.org/10.1038/srep13797 Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects 22 2015 Giacomin P, Zakrzewski M, Croese J, Su X, Sotillo J, McCann L, Navarro S, Mitreva M, Krause L, Loukas A, Cantacessi C true 6 SRP059769 1 1 0 This study assessed the qualitative and quantitative changes in the microbiota of 8 human volunteers with coeliac disease prior to and following infection with Necator americanus, and 24, 36 and 52 weeks following challenge with escalating doses of dietary gluten. <_link_ParasiteSpecies>9 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T10:11:06.69+00:00 2019-06-25T14:45:03.97+00:00 true 62 74970d66-c899-4e02-aeb8-80b8ad36e04c 2015_2 1 1 8 https://doi.org/10.1371/journal.pone.0125495 Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli 20 2015 Holm JB, Sorobetea D, Kiilerich P, Ramayo-Caldas Y, Estellé J, Ma T, Madsen L, Kristiansen K, Svensson-Frej M true 2 ERP006108 1 1 1 This study assessed the influence of low-dose chronic infection of C57BL/6 mice with Trichuris muris, using faecal samples collected at 13, 20 and 27 days post-infection, as well as luminal colon content samples collected at 35 days post-infection. 3,10 14,19 8,15,21,54,58,76,82,91,97 10,15 0 0 <_link_ParasiteSpecies>10 <_link_InfectedSpecies>1 <_link_SampleSite>2 <_link_SampleType>2,8 2019-06-20T10:24:22.11+00:00 2019-07-04T12:03:40.1+00:00 true 63 254fd3c6-1d67-469a-98d6-729b3c29dc37 2015_3 1 1 4 https://doi.org/10.1371/journal.pone.0125945 Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance 20 2015 Houlden A, Hayes KS, Bancroft AJ, Worthington JJ, Wang P, Grencis RK, Roberts IS true 2 ERP008663 2 2 0 This study investigated gut microbial communities of C57BL/6 mice infected by Trichuris muris profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and β- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. 71,80,84 3 <_link_ParasiteSpecies>10 <_link_InfectedSpecies>1 <_link_SampleType>2 2019-06-20T10:29:14.49+00:00 2019-06-25T14:31:57.99+00:00 true 64 30c9b0b3-888f-4676-b5b7-fb5b644515fa 2015_4 1 1 8 https://doi.org/10.1186/s40168-015-0103-8 Type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis 2 2015 Fricke WF, Song Y, Wang AJ, Smith A, Grinchuk V, Pei C, Ma B, Lu N, Urban JF Jr, Shea-Donohue T, Zhao A true 6 PRJNA255974 0 0 0 This study demonstrated that the effects of Nippostrongylus braziliensis infection on the composition of the murine gut microbiota, host antimicrobial proteins (AMP) and IL-17 expression, were attenuated in STAT6 -/- and IL-13 -/- knockout mice. 6,8,19,30,37,39 1,2,9 3 <_link_ParasiteSpecies>11 <_link_InfectedSpecies>1 <_link_SampleSite>64 <_link_SampleType>2,8 2019-06-20T10:33:35.32+00:00 2019-07-05T09:49:50.09+00:00 true 65 dfd433aa-c09c-4403-8373-c272fc4c2dd3 2015_5 0 2 4 https://10.1098/rstb.2014.0295 Interactions between multiple helminths and the gut microbiota in wild rodents 17 2015 Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE false 2 ERP009377 0 0 1 This stud investigated the association between microbiota diversity and composition and natural infection of multiple helminth species in 29 wild mice (Apodemus flavicollis) infected by Heligmosomoides polygyrus, Syphacia spp. and Hymenolepis spp. Within this wild rodent system, variation in the composition and abundance of gut microbial taxa associated with helminths was specific to each helminth species and occurred both up- and downstream of a given helminth's niche. The most pronounced helminth–microbiota association was between the presence of tapeworms in the small intestine and increased S24–7 (Bacteroidetes) family in the stomach. 19,37 2,9 <_link_ParasiteSpecies>1,13,12 <_link_InfectedSpecies>11 <_link_SampleSite>2,128,2048,256 <_link_SampleType>8,16 2019-06-20T10:40:31.99+00:00 2019-06-25T14:23:53.62+00:00 true 66 7809be47-46cd-470c-b8ae-e8511641f0c6 2015_6 12 1 8 https://doi.org/10.1080/19490976.2015.1047128 Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta 9 2015 McKenney EA, Williamson L, Yoder AD, Rawls JF, Bilbo SD, Parker W true 6 PRJNA270622 0 0 0 In this study, the microbiome of the cecum in Sprague Dawley rats colonized for 2 generations with the small intestinal helminth Hymenolepis diminuta was evaluated. 3,6 30 110 <_link_ParasiteSpecies>13 <_link_InfectedSpecies>12 <_link_SampleSite>2 <_link_SampleType>8 2019-06-20T10:45:59.35+00:00 2019-07-04T12:07:54.55+00:00 true 67 978d08a7-610b-4cfe-a3e1-ae89db549561 2015_7 0 2 4 https://doi.org/10.1016/j.ijpara.2015.04.001 (DOG) - Differences in the faecal microbiome of non-diarrhoeic clinically healthy dogs and cats associated with Giardia duodenalis infection: impact of hookworms and coccidia 11 2015 Šlapeta J, Dowd SE, Alanazi AD, Westman ME, Brown GK false 6 PRJNA276586 0 0 0 This study compared the composition and diversity of bacterial communities from 40 dogs, including free-roaming dogs, and 21 surrendered cats from Australia. The dog cohort included 17 (42.5%) dogs positive for Giardia and 13 (32.5%) dogs positive for dog hookworm (Ancylostoma caninum). The cat samples included eight positive for Giardia and eight positive for Cystoisospora. In dogs, significant difference in faecal microbial profiles (at genus level) were observed between the Giardia-positive and -negative groups. No such difference was demonstrated between Ancylostoma-positive and -negative dogs. 13,18,24,29,51,55,86,87 <_link_ParasiteSpecies>142,31 <_link_InfectedSpecies>24,13 <_link_SampleType>2 2019-06-20T10:49:43.8+00:00 2019-07-04T12:12:40.52+00:00 true 68 64fbff77-e1e7-4d63-a52e-bc206c68791a 2016_1 5 1 8 https://doi.org/10.1038/srep36797 Changes in duodenal tissue-associated microbiota following hookworm infection and consecutive gluten challenges in humans with coeliac disease 22 2016 Giacomin P, Zakrzewski M, Jenkins TP, Su X, Al-Hallaf R, Croese J, de Vries S, Grant A, Mitreva M, Loukas A, Krause L, Cantacessi C true 6 SRP078558 1 1 0 This study investigated the changes in gut microbiota microbiota composition at the site of infection by Necator americanus and gluten-dependent inflammation in 6 human volunteers with coeliac disease using biopsy tissue from the duodenum collected prior to infection, as well as 24 weeks post-infection (i.e. following the administration of 10–50 mg/day gluten from weeks 12–24) and 36 weeks post-infection (i.e. following the administration of twice-weekly 1 g/day gluten from weeks 24 to 36). 4,12 33,42 84 2,11 <_link_ParasiteSpecies>9 <_link_InfectedSpecies>5 <_link_SampleSite>32 <_link_SampleType>64 2019-06-20T10:53:55.63+00:00 2019-06-25T14:01:59.41+00:00 true 69 de777233-145b-482f-a1ce-dd412b9d6493 2016_2 14 1 4 https://doi.org/10.1371/journal.pone.0159770 Impact of helminth infections and nutritional constraints on the small intestine microbiota 20 2016 Cattadori IM, Sebastian A, Hao H, Katani R, Albert I, Eilertson KE, Kapur V, Pathak A, Mitchell S true 5 Unavailable 2 2 0 This study used the Trichostrongylus retortaeformis-rabbit system to examine how the helminth infection and host restriction from coprophagy/ready-to-absorb nutrients affected the duodenal microbiota. Helminths reduced the diversity and abundance of the microbiota while the combination of parasites and coprophagic restriction led to a more diversified and abundant microbiota than infected cases, without significantly affecting the intensity of infection. Animals restricted from coprophagy and free from parasites exhibited the richest and most abundant bacterial community. 2,9,22,31,36 13,36,61,92 9,13,14 <_link_ParasiteSpecies>15 <_link_InfectedSpecies>14 <_link_SampleSite>32 <_link_SampleType>16 2019-06-20T10:58:36.22+00:00 2019-06-25T13:42:10.2+00:00 true 70 c8980ecc-3e4c-4064-abcc-e7fe74358925 2016_3 15 1 8 https://doi.org/10.1038/srep20606 The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome 22 2016 Li RW, Li W, Sun J, Yu P, Baldwin RL, Urban JF Jr true 4 mgp13390; mgm4629311.3 to mgm4629350.3 0 0 0 This study characterized the impact of H. contortus infection on the abomasal microbiome of 14 parasite naive goats inoculated with 5,000 H. contortus infective larvae and 6 age-matched uninfected controls, 50 days post-experimental infection. 18 103 17 7 9 <_link_ParasiteSpecies>16 <_link_InfectedSpecies>15 <_link_SampleSite>16 <_link_SampleType>8 2019-06-20T12:40:16.37+00:00 2019-07-04T12:18:24.77+00:00 true 71 d042a19b-fb24-425f-80c6-2837bb95b2de 2016_4 13 2 8 https://doi.org/10.1186/s13071-016-1908-4 Helminth infections and gut microbiota – a feline perspective 3 2016 Duarte AM, Jenkins TP, Latrofa MS, Giannelli A, Papadopoulos E, Madeira de Carvalho L, Nolan MJ, Otranto D, Cantacessi C true 6 PRJNA349988 0 0 0 This study investigated qualitative and quantitative differences in faecal microbial profiles between cats with patent infections by Toxocara cati (n = 24) and uninfected controls (n = 21). 7,14 7,13 20,32,39,42,56,58,92 6,15 1 <_link_ParasiteSpecies>17 <_link_InfectedSpecies>13 <_link_SampleType>2 2019-06-20T12:44:18.12+00:00 2019-07-04T12:19:52.54+00:00 true 72 e897b9e1-445b-4ea2-9dde-a7911d312fdd 2017_1 5 2 8 https://doi.org/10.1371/journal.pone.0184719 Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition 20 2017 Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, Rajakaruna RS, Cantacessi C true 6 PRJEB21999 0 0 1 This study explored the qualitative and quantitative differences between the microbial community profiles of cohorts of human volunteers from Sri Lanka with patent infection by one or more parasitic nematode species (H+ = 11), as well as that of uninfected subjects (H- = 11) and of volunteers who had been subjected to regular prophylactic anthelmintic treatment (Ht = 11). No significant differences in alpha diversity (Shannon) and richness between groups were detected; however, beta diversity was significantly increased in H+ and Ht when individually compared to H-volunteers. Among others, bacteria of the families Verrucomicrobiaceae and Enterobacteriaceae showed a trend towards increased abundance in H+, whereas the Leuconostocaceae and Bacteroidaceae showed a relative increase in H- and Ht respectively. 21 2,12,23,41 7,13,60 24 1 <_link_ParasiteSpecies>18,19,9,3 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T12:49:01.79+00:00 2019-07-04T12:23:07.77+00:00 true 73 234a9b6d-cae9-42aa-8884-9580bfad0180 2017_2 12 1 8 https://doi.org/10.1371/journal.pone.0182205 A benign helminth alters the host immune system and the gut microbiota in a rat model system 20 2017 Wegener Parfrey L, Jirků M, Šíma R, Jalovecká M, Sak B, Grigore K, Jirků Pomajbíkova K true 2 ERP014631 0 0 0 This study investigated the impact of infection by Hymenolepis diminuta on the gut microbial composition of a rat model system, prior to infection as well as at 10, 15, 30, 40, 50, 60, 70 and 80 days post-infection. 17 13,14,36 105,110 <_link_ParasiteSpecies>13 <_link_InfectedSpecies>12 <_link_SampleType>2 2019-06-20T12:53:33.29+00:00 2019-07-04T12:24:05.23+00:00 true 74 c2f19866-eaf5-4b19-a7d5-95247f60f183 2018_2 1 1 8 https://doi.org/10.1038/s41598-018-30412-x Schistosoma mansoni infection is associated with quantitative and qualitative modifcations of the mammalian intestinal microbiota 22 2018 Jenkins TP, Peachey LE, Ajami NJ, MacDonald AS, Hsieh MH, Brindley PJ, Cantacessi C, Rinaldi G true 3 10.17632/y8c7vpc8zp.1 2 2 1 This study characterised the fluctuations in the composition of the gut microbial flora of the small and large intestine, as well as the changes in abundance of individual microbial species, of Swiss-Webster mice experimentally infected with Schistosoma mansoni, prior to and following the onset of egg laying (at 28 and 50 days post-infection, respectively). A significant expansion in populations of bacteria of the Family Verrucomicrobiaceae (species Akkermansia muciniphila) was detected at both intestinal sites and at both time-points in infected mice in comparison to uninfected controls. Bacteria belonging to the Lactobacillaceae were also expanded in the large intestine of schistosome-infected mice mice at 28 days p.i., while those belonging to the Orders Bacteroidales, Coriobacteriales and Clostridiales were expanded in either the small intestine, i.e. Bacteroides acidifaciens, Lachnospiraceae, and/or large intestine of infected mice at 50 days p.i., i.e. Bacteroides acidifaciens, Parabacteroides, Adlercreutzia, Lachnospiraceae, Oscillospira. Conversely, a marked contraction of bacteria of the Class Erysipelotrichia was evident at both small and large intestine of helminth-infected mice at day 50 p.i. compared to uninfected controls. 11,21 2,6,8,18,19,32,41 5,7,8,13,39,58,77,80,110 2,6,15,23,24 16 1,2,7,8 <_link_ParasiteSpecies>20 <_link_InfectedSpecies>1 <_link_SampleSite>8,64 <_link_SampleType>8 2019-06-20T13:09:12.96+00:00 2019-07-04T12:34:44.7+00:00 true 75 4d94b0a7-6449-4caa-b40d-48d9775ba024 2018_3 5 2 8 https://doi.org/10.1186/s13071-018-2739-2 Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome 3 2018 Schneeberger PHH, Coulibaly JT, Panic G, Daubenberger C, Gueuning M, Frey JE, Keiser J true 5 Unavailable 0 0 0 This study investigated differences in faecal microbiota composition between Schistosoma mansoni infected (n = 34) and uninfected children (n = 6) from Côte d'Ivoire. From each infected child one pre-treatment, one 24-hour and one 21-day follow-up sample after administration of 60 mg/kg praziquantel or placebo, were collected. The abundance of bacteria belonging to the order Fusobacteriales was significantly increased in the gut microbiota of cured individuals, both at baseline and 24 hours post-treatment. 13,19 1,4,5,17,29 22,50,57 1,4,5,12 10,13,16 5 <_link_ParasiteSpecies>20 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T13:14:27.75+00:00 2019-07-04T12:37:58.23+00:00 true 76 2a9e5cb4-46b1-4fdb-bb68-5107415678b8 2018_4 1 1 4 https://doi.org/10.1038/mi.2017.20 Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis 13 2018 Su C, Su L, Li Y, Long SR, Chang J, Zhang W, Walker WA, Xavier RX, Cherayil BJ, Shi HN true 5 Unavailable 0 1 0 This study analyzed the fecal microbiota composition of Heligmosomoides polygyrus-infected and -uninfected BALB/C mice. Recipient mice of the gut microbiota from helminth-infected wide-type, but not STAT6-deficient, BALB/C donors displayed increased faecal pathogen shedding and exacerbation of Citrobacter-induced colitis compared to recipients of microbiota from control donors. 0 7,13,18,29,43,47,58 0 3,9 3 <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleType>2 2019-06-20T13:17:51.76+00:00 2019-07-04T12:41:46.82+00:00 true 77 5cad4c32-31b4-4bd8-b3f2-ab6b38942af7 2018_5 5 2 4 https://doi.org/10.1371/journal.pntd.0006620 Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia 18 2018 Martin I, Djuardi Y, Sartono E, Rosa BA, Supali T, Mitreva M, Houwing-Duistermaat JJ, Yazdanbakhsh M true 7 nematode.net/ Indonesia_Microbiome.htm 0 0 0 This study investigated changes in the gut bacteria profiles of faecal samples from 150 human subjects enrolled in a double blind placebo controlled trial conducted in an area endemic for soil transmitted helminths in Indonesia. Either placebo or albendazole were given every three months for a period of one and a half years. Helminth infection was assessed before and at 3 months after the last treatment round. No differences were observed in terms of relative abundance of gut microbial species between helminth-infected and uninfected subjects and at post-treatment, and no differences were detected in gut microbiome composition between albendazole- and placebo-recipients. In subjects who remained infected post-anthelmintic treatment, a significant difference in microbiome composition between albendazole- and placebo-recipients was detected, and largely attributed to alterations in the abundance of Bacteroidetes. Albendazole was more effective against Ascaris lumbricoides and hookworms but not against Trichuris trichiura. 1,3 <_link_ParasiteSpecies>18,19,9,22,3 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T13:22:58.47+00:00 2019-07-04T12:42:37.62+00:00 true 78 e4423a7b-1843-4e78-9ae4-44b03891ae8b 2018_6 5 2 8 10.1038/s41598-018-33937-3 A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area 22 2018 Jenkins TP, Formenti F, Castro C, Piubelli C, Perandin F, Buonfrate D, Otranto D, Griffin JL, Krause L, Bisoffi Z, Cantacessi C true 3 10.17632/n86dtjvmbv.1) 1 1 0 This study explored the impact of natural mono-infections by the human parasite Strongyloides stercoralis on the faecal microbiota and metabolic profiles of a cohort of human volunteers from a non-endemic area of northern Italy (S+ = 20), pre- and post-anthelmintic treatment, and compared the findings with data obtained from a cohort of uninfected controls from the same geographical area (S- = 11). Samples from S+post-treatment subjects, displayed a significant decrease of bacteria belonging to the order Turicibacterales (genus Turicibacter) and an increase of Enterobacteriales (in particular associated to the genus Shigella) compared to corresponding samples from S+pre-treatment. Faecal metabolite analysis detected marked increases in the abundance of selected amino acids in S+ subjects, and of short chain fatty acids in S− subjects. 9,16 2,24 16,35,66,88 14,16,21 6,7 <_link_ParasiteSpecies>22 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-20T13:28:27.09+00:00 2019-07-04T12:46:57.31+00:00 true 79 b839ff5b-2e01-4fa2-bad3-bde1c4d7e1ce 2018_7 19 2 8 https://doi.org/10.1016/j.ijpara.2017.11.003 The relationships between faecal egg counts and gut microbial composition in UK Thoroughbreds infected by cyathostomins 11 2018 Peachey LE, Molena RA, Jenkins TP, Di Cesare A, Traversa D, Hodgkinson JE, Cantacessi C true 3 http://doi.org/10.17632/g7chkjrp8f.1 0 0 0 This study characterised the composition of the equine gut commensal flora associated with the presence, in faecal samples, of low (Clow = 18) and high (Chigh = 18) numbers of eggs of cyathostomin parasites prior to and 2 and 14 days following treatment with ivermectin. Anthelmintic treatment in Chigh was associated with a significant reduction of the bacterial Phylum TM7 14 days post-ivermectin administration, as well as a transient expansion of Adlercreutzia spp. at 2 days post-treatment. 0 12,23,33,34,36,39 83,87,110 9,18,23 4 <_link_ParasiteSpecies>23 <_link_InfectedSpecies>19 <_link_SampleType>2 2019-06-20T13:36:38.09+00:00 2019-07-04T12:44:47.99+00:00 true 80 cec3c02e-9028-427f-8acf-c9fb7a184098 2017_3 20 1 8 https://doi.org/10.1007/s11259-017-9698-5 Microbial community and ovine host response varies with early and late stages of Haemonchus contortus infection 25 2017 El-Ashram S, Al Nasr I, Abouhaje F, El-Kemary M, Huang G, Dinçel G, Mehmood R, Hu M, Suo X false 5 Unavailable 1 1 1 This study investigated changes in abomasal microbial profiles of lambs experimentally infected with Haemonchus contortus, at 7 and 50 days post-infection, and compared to uninfected controls. 84 <_link_ParasiteSpecies>16 <_link_InfectedSpecies>20 <_link_SampleSite>16,4 <_link_SampleType>4 2019-06-20T13:41:40.86+00:00 2019-06-25T13:14:44.59+00:00 true 81 87a417df-cce9-4941-be3e-5ff8c1aaf7f0 2015_8 5 2 8 https://doi.org/10.1371/journal.pntd.0003861 Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children 18 2015 Kay GL, Millard A, Sergeant MJ, Midzi N, Gwisai R, Mduluza T, Ivens A, Nausch N, Mutapi F, Pallen M true 5 Unavailable 0 0 0 This study characterised the faecal microbiota profiles of children from the Murewa district in Zimbabwe infected by Schistosoma haematobium, pre- and post-treatment with praziquantel. 84 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-21T12:09:26.14+00:00 2019-06-25T14:06:34.83+00:00 true 82 eb27df3b-807f-453c-b51e-5df363c04220 2016_5 12 1 8 https://doi.org/10.1016/j.bbi.2015.07.006 Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection 4 2016 Williamson LL, McKenney EA, Holzknecht ZE, Belliveau C, Rawls JF, Poulton S, Parker W, Bilbo SD false 5 Unavailable 4 4 4 This study investigated the effect of Hymenolepis diminuta infection on the gut microbiome of newborn rats born from male and female Sprague–Dawley rats (infected six weeks prior to breeding) 21 days after birth. 3,6 <_link_ParasiteSpecies>13 <_link_InfectedSpecies>12 <_link_SampleSite>2 2019-06-21T12:14:23.38+00:00 2019-06-25T13:34:59.85+00:00 true 83 238b9b00-7112-4a7e-92b7-072fe759c999 2018_8 19 2 8 https://doi.org/10.3389/fphys.2018.00272 Strongyle infection and gut microbiota: profiling of resistant and susceptible horses over a grazing season 8 2018 Clark A, Sallé G, Ballan V, Reigner F, Meynadier A, Cortet J, Koch C, Riou M, Blanchard A, Mach N true 2 PRJNA413884 0 0 0 This study investigated differences in faecal microbial profiles between female Welsh ponies (10 susceptible (S) and 10 resistant (R) to parasite infections) during 5 months on pasture. Samples for microbiota sequencing and analysis were collected prior to turn-out, as well as at 24, 43, 92 and 132 days post-turnout. 18 2,12,22,30,31,78,87,92 <_link_ParasiteSpecies>24 <_link_InfectedSpecies>19 <_link_SampleType>2 2019-06-21T12:20:20.1+00:00 2019-06-25T11:49:13.96+00:00 true 84 1dd7e3ef-3a3f-49e1-9629-13961e375753 2018_9 1 1 8 https://doi.org/10.1016/j.exppara.2018.08.002 Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum 5 2018 Kim JY, Kim EM, Yi M, Lee J, Lee S, Hwang Y, Yong D, Sohn WM, Yong TS false 6 SRP154312 0 0 0 This study investigated qualitative and quantitative changes in caecal content microbiota from ICR mice 4 weeks following infection with Metagonimus yokogawai, in comparison with uninfected control mice. 6,14,26,32,35,37,38 2,9 2,4,6,7 <_link_ParasiteSpecies>25 <_link_InfectedSpecies>1 <_link_SampleSite>2 2019-06-21T12:29:07.1+00:00 2019-06-25T11:40:39.33+00:00 true 85 07cca994-9ce4-4c19-bc7f-241623245e39 2018_10 4 1 8 https://doi.org/10.3389/fimmu.2018.02557 Mucosal barrier and Th2 immune responses are enhanced by dietary inulin in pigs infected with Trichuris suis 6 2018 Myhill LJ, Stolzenbach S, Hansen TVA, Skovgaard K, Stensvold CR, O'Brien Andersen L, Nejsum P, Mejer H, Thamsborg SM, Williams AR true 2 PRJEB29079 0 0 0 This study investigated the effects of Trichuris suis infection on the gut microbiota of pigs supplemented with inulin. Inulin supplementation reduced the abundance of bacterial phyla linked to inflammation, such as Proteobacteria and Firmicutes, and simultaneously increased Actinobacteria and Bacteroidetes. Pigs treated with both inulin and T. suis displayed the highest Bacteroidetes: Firmicutes ratio and the lowest gut pH. 19 84 3,9 <_link_ParasiteSpecies>4 <_link_InfectedSpecies>4 <_link_SampleSite>128 2019-06-21T12:51:56.15+00:00 2019-07-04T12:50:10.51+00:00 true 86 7023ef7b-e64c-40ba-bde7-e8a629d4e74d 2018_11 5 2 8 https://doi.org/10.3389/fmicb.2018.02292 Altered gut microbiota composition in subjects infected with Clonorchis sinensis 7 2018 Xu M, Jiang Z, Huang W, Yin J, Ou S, Jiang Y, Meng L, Cao S, Yu A, Cao J, Shen Y true 6 SRP158183 0 0 0 This study characterised qualitative and quantitative differences in faecal microbial profiles between 47 volunteers infected by Clonorchis sinensis and 42 healthy controls from five rural communities from the Teng County, Guangxi Zhuang Autonomous Region, China. 6,13,17,23,27,28,29,38,39,40,41,42,44,57,62,64,67,68,73,80,81,89,92,97,100,111,112 3,5,15 3 <_link_ParasiteSpecies>26 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-21T14:25:03.16+00:00 2019-06-25T12:39:13.29+00:00 true 87 da4b7dc2-d3e0-4192-9001-1a7c2b1ed415 2018_12 12 1 8 https://doi.org/10.1017/S0031182018000896 The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system 15 2018 Pomajbíková KJ, Jirků M, Levá J, Sobotková K, Morien E, Parfrey LW false 2 PRJEB25354 0 0 0 This study investigated the ability of different life cycle stages of H. diminuta to protect rats against a model of colitis induced through application of the haptenizing agent dinitrobenzene sulphonic acid (DNBS) directly to the colon, partly via modifications in gut microbiota composition. The gut microbiota was disrupted during the onset of colitis and did not appear to play an overt role in H. diminuta-mediated protection. 41 7,45,58,60 <_link_ParasiteSpecies>13 <_link_InfectedSpecies>12 <_link_SampleType>2 2019-06-21T14:38:52.36+00:00 2019-06-25T12:35:42.09+00:00 true 88 802d5ed7-c7a6-48cc-9617-ac852bada887 2018_13 1 1 4 DOI: 10.1126/sciadv.aap7399 Manipulation of host and parasite microbiotas: survival strategies during chronic nematode infection 21 2018 White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, Grencis RK, Roberts IS true 2 PRJEB12611 0 0 1 This study investigated the impact of Trichuris muris–induced alterations in the host intestinal microbiota on the outcome of subsequent rounds of infection. The study demonstrated that a second infection by Trichuris muris resulted, therefore hatching in an altered host intestinal microbiota, resulted in significantly reduced worm burden compared to those infecting a naïve host intestinal microbiota. 33,35 3,9 <_link_ParasiteSpecies>10 <_link_InfectedSpecies>1 <_link_SampleSite>2 2019-06-21T14:43:15.24+00:00 2019-06-25T12:32:31.63+00:00 true 89 20ea7ab7-3969-4e86-b680-c20a72b1f9c2 2019_1 5 2 8 https://doi.org/10.7717/peerj.6200 Intestinal parasitic infection alters bacterial gut microbiota in children 16 2019 Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, Alzate JF​ true 6 PRJNA487588 2 2 0 This study investigated qualitative and quantitative differences in faecal microbiota composition between children infected by Cryptosporidium (n = 5), Giardia intestinalis (n = 6), and co-infected by Ascaris sp. and either Trichuris trichiura or Enterobius vermicularis or Giardia (n = 6). Samples from uninfected controls (n = 6) were also included. The latter group was characterised a type I enterotype (i.e. predominant Bacteroides spp.), whilst helminth- and protozoan-infected children are characterised by a type II enterotype (predominant Prevotella spp.). 2,33 13,84 <_link_ParasiteSpecies>19,143,39,30,31,3 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-21T14:47:07.33+00:00 2019-06-25T10:35:15.06+00:00 true 90 9cc322a8-4b66-4ddd-ada9-3165e81f5879 2019_2 5 2 8 https://doi.org/10.1038/s41598-018-36709-1 Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents 22 2019 Ajibola O, Rowan AD, Ogedengbe CO, Mshelia MB, Cabral DJ, Eze AA, Obaro S, Belenky P true 1 https://repository.library.brown.edu/studio/item/bdr:698310/ 0 0 1 This study investigated qualitative and quantitative differences in faecal microbiota composition between Schistosoma haematobium-infected (n = 24) and -uninfected (n = 25) young adolescents from the Argungu Local Government Area of Kebbi State, Nigeria. 1,5,6,8,13,15,17,18 3,10,14,25,28,29,33,36,40 3,9,29,34,37,38,53,64,69,74,80,83,84,102 5,7,12,13,17,18,20,22 4,9,13,15 <_link_ParasiteSpecies>27 <_link_InfectedSpecies>5 <_link_SampleType>2 2019-06-21T14:51:36.08+00:00 2019-07-04T12:56:57.37+00:00 true 91 b43c8f44-e4ab-40b0-8fcc-51c996985361 2019_3 1 1 8 https://doi.org/10.1007/s00436-018-6179-x Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice 14 2019 Kim JY, Kim EM, Yi M, Lee J, Lee S, Hwang Y, Yong D, Sohn WM, Yong TS false 5 Unavailable 0 0 0 This study investigated changes in the gut microbiome of C57BL/6 mice infected with Clonorchis sinensis metacercariae over time. Differences in gut microbiome composition between infected and uninfected mice were detected at 20 and 30 days post-infection, whereas no significant differences between groups were observed at 50 days post-infection. 58 7 <_link_ParasiteSpecies>26 <_link_InfectedSpecies>1 <_link_SampleType>2 2019-06-21T15:02:29.58+00:00 2019-07-04T10:27:01.97+00:00 true 92 0a414510-e7d8-4e9e-8e54-aa7a805d3652 2015_8 0 2 4 https://doi.org/10.1016/j.ijpara.2015.04.001 (CAT) Differences in the faecal microbiome of non-diarrhoeic clinically healthy dogs and cats associated with Giardia duodenalis infection: impact of hookworms and coccidia 11 2015 Šlapeta J, Dowd SE, Alanazi AD, Westman ME, Brown GK false 6 PRJNA276586 0 0 0 This study compared the composition and diversity of bacterial communities from 40 dogs, including free-roaming dogs, and 21 surrendered cats from Australia. The dog cohort included 17 (42.5%) dogs positive for Giardia and 13 (32.5%) dogs positive for dog hookworm (Ancylostoma caninum). The cat samples included eight positive for Giardia and eight positive for Cystoisospora. In dogs, significant difference in faecal microbial profiles (at genus level) were observed between the Giardia-positive and -negative groups. No such difference was demonstrated between Ancylostoma-positive and -negative dogs. 13,18,24,29,51,55,86,87 <_link_ParasiteSpecies>142,31 <_link_InfectedSpecies>24,13 <_link_SampleType>2 2019-07-04T15:16:38.49+00:00 true 93 a39e1599-b817-4384-83f3-2ee9d48c84e5 2019_4 20 1 8 https://doi.org/10.1038/s41396-019-0462-4 Microbiome analysis as a platform R&D tool for parasitic nematode disease management 0 2019 Glenn Hogan, Sidney Walker, Frank Turnbull, Tania Curiao, Alison A. Morrison, Yensi Flores, Leigh Andrews, Marcus J. Claesson, Mark Tangney, Dave J. Bartley false 5 New project number 2 2 0 This study investigated, pre-and post-infection, qualitative and quantitative changes in abomasum and feaces content microbiota of sheep co-infected with Haemonchus contortus and Teladorsagia circumcincta. <_link_ParasiteSpecies>16 <_link_InfectedSpecies>20 <_link_SampleSite>16 <_link_SampleType>2 2019-07-28T23:20:07.91+00:00 true 94 3f91ce99-938f-4e57-839f-8256ef3b0ae5 2019_5 1 1 8 https://doi.org/10.3390/cells8060577 Contribution of the gut microbiota in P28GST-mediated anti-inflammatory effects: experimental and clinical insights 0 2019 Benoît Foligné , Coline Plé, Marie Titécat, Arnaud Dendooven, Aurélien Pagny, Catherine Daniel, Elisabeth Singer, Muriel Pottier, Benjamin Bertin, Christel Neut, Dominique Deplanque, Laurent Dubuquoy, Pierre Desreumaux, Monique Capron, Annie Standaert false 0 New project number 1 0 0 This study investigatd the changes in the profiles of mice faecal microbiota at several time points of the P28GST-immunomodulation period. <_link_ParasiteSpecies>145 <_link_InfectedSpecies>1 2019-07-28T23:21:35.53+00:00 true 95 8dc1fa22-3a00-4c68-9aaf-409b87821f55 2019_6 1 1 4 https://doi.org/10.1128/IAI.00275-19 Schistosoma mansoni worm infection regulates the intestinal microbiota and susceptibility to colitis 0 2019 Achilleas Floudasa, Gabriella Avielloa, Christian Schwartza, Ian B. Jefferyb, Paul W. O'Tooleb and Padraic G. Fallon false 5 New project number 4 4 4 The study investigated the faecal microbiota profile of mice infected or with only adult male Schistosoma mansoni worms, or co-infected with adult male- and female-worms. <_link_ParasiteSpecies>20 <_link_InfectedSpecies>1 2019-07-28T23:23:21.9+00:00 true 96 3c55975e-fdd4-4377-b2bb-67905b0f87e0 2019_7 5 2 8 https://doi.org/10.1128/mBio.00519-19 The impact of anthelmintic treatment on human gut microbiota based on cross-sectional and pre- and postdeworming comparisons in Western Kenya 0 2019 Alice V. Easton, Mariam Quiñones, Ivan Vujkovic-Cvijin, Rita G. Oliveira, Stella Kepha, Maurice R. Odiere, Roy M. Anderson, Yasmine Belkaid, Thomas B. Nutman false 0 New project number 0 0 0 This study analysed the microbiota profiles of stool samples collected from residents of 5 rural Kenyan villages prior to and 3 weeks and 3 months following albendazole therapy, to provide new insight into the complex interplay among soil-transmitted helminths and human gut microbiome. <_link_ParasiteSpecies>19,9 <_link_InfectedSpecies>5 2019-07-28T23:24:05.14+00:00 true 97 a2a7077f-95cd-4012-8282-929548e0ffd7 2019_8 19 2 8 https://doi.org/10.1016/j.ijpara.2019.02.003 Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses 0 2019 Nicola Walshe, Vivienne Duggan, Raul Cabrera-Rubio, Fiona Crispie, Paul Cotter, Orna Feehan, Grace Mulcahy false 0 New project number 1 1 4 In this study, authors studied changes in the faecal microbiota of two groups of horses, infected by cyathostomins, following treatment with anthelmintics (fenbendazole or moxidectin). <_link_ParasiteSpecies>23 <_link_InfectedSpecies>19 2019-07-28T23:24:54.72+00:00 true 98 a6d40ad3-55f0-4f9a-92ee-507b1cd0b76d 2019_9 5 2 8 https://doi.org/10.4269/ajtmh.18-0968 Interactions between parasitic infections and the human gut microbiome in Odisha, India 29 2019 Tiffany Huwe, Birendra Kumar Prusty, Aisurya Ray, Shaun Lee, Balachandran Ravindran, Edwin Michael true 0 0 0 0 1 In this study, authors investigated the human faecal microbiota profile associated with soil-transmitted helminth (Ascaris lumbricoides, Necator americanus, Trichuris trichiura) infections in the area of Odisha, India. <_link_ParasiteSpecies>19,9,3 <_link_InfectedSpecies>5 <_link_SampleSite>0 <_link_SampleType>2 2019-08-05T10:59:19.32+00:00 2019-08-05T11:35:13.27+00:00 true 99 d0c95d03-7d0b-45ca-b4c9-93d374d291da 2019_10 1 1 8 https://doi.org/10.1128/IAI.00042-19 Suppression of obesity by an intestinal helminth through interactions with intestinal microbiota 1 2019 Chikako Shimokawa, Seiji Obi, Mioko Shibata, Alex Olia, Takashi Imai, Kazutomo Suzue, Hajime Hisaeda true 0 New project number 4 4 4 This study investigated whether an intestinal nematode, Heligmosomoides polygyrus, has a suppressive role in diet-induced obesity in mice, altering the intestinal microbiota profile. <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleSite>0 <_link_SampleType>2 2019-08-05T11:06:07.34+00:00 true 100 ca75498e-2c75-44ad-b880-3ed20a37ac6c 2019_11 1 1 256 https://doi.org/10.1038/s41467-019-09361-0 The parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in inflammatory arthritis 0 2019 James Doonan, Anuradha Tarafdar, Miguel A. Pineda, Felicity E. Lumb, Jenny Crowe, Aneesah M. Khan, Paul A. Hoskisson, Margaret M. Harnett, William Harnett false 0 mgm4777616.3, 4777615.3, 4777614.3, 4777613.3, 4777481.3, 4777480.3, 4777479.3, 4777478.3, 4767994.3, 4767993.3, 4767992.3, 4767991.3, 4767990.3, 4767989.3, 4767988.3, 4767987.3, 4767986.3, 4738191.3, 4738190.3, 4738025.3, 4737887.3, 4737053.3 and 4737052.3 1 1 4 In this study, authors employ ES-62, an immunomodulator secreted by tissue-dwelling Acanthocheilonema viteae to show that helminth-modulation of the gut microbiome does not require live infection with gastrointestinal-based worms. <_link_ParasiteSpecies>147,148 <_link_InfectedSpecies>1 2019-08-05T11:07:38.39+00:00 true 101 b5a6798d-572b-4337-91b6-fe6800e3a043 2019_12 1 1 8 https://doi.org/10.1371/journal.ppat.1007265 Exclusive dependence of IL-10Rα signalling on intestinal microbiota homeostasis and control of whipworm infection 19 2019 María A. Duque-Correa , Natasha A. Karp, Catherine McCarthy, Simon Forman, David Goulding, Geetha Sankaranarayanan, Timothy P. Jenkins, Adam J. Reid, Emma L. Cambridge, Carmen Ballesteros Reviriego, The Sanger Mouse Genetics Project, The 3i consortium , Werner Müller, Cinzia Cantacessi, Gordon Dougan, Richard K. Grencis, Matthew Berriman false 2 ERP016361 2 2 1 This study analysed the role of the IL-10 family, an intestinal inflammatory responses mediators group, in the resistance of mice to infection with Trichuris muris, investigating the caecal microbiota profile. <_link_ParasiteSpecies>10 <_link_InfectedSpecies>1 <_link_SampleSite>2 2019-08-05T11:09:57.87+00:00 true 102 9ff2fb8b-2a3c-4cd9-9dd0-7b9e308d83c1 2019_13 19 2 8 In press Dysbiosis associated with acute helminth infections in herbivorous youngstock – observations and implications 22 2019 Laura E. Peachey, Cecilia Castro, Rebecca A. Molena, Timothy P. Jenkins, Julian L. Griffin, Cinzia Cantacessi false 3 DOI: 10.17632/95m8sfd3kt.1 0 0 0 This study investigates, for the first time, the associations between acute infections by gastrointestinal helminths and the faecal microbial of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin). <_link_ParasiteSpecies>146,24 <_link_InfectedSpecies>19 <_link_SampleType>2 2019-08-05T11:26:28.77+00:00 true 103 d781f0f1-2a07-45e5-96f8-64b3ab2be2aa 2019_14 4 1 8 https://doi.org/10.3389/fimmu.2018.02557 Mucosal barrier and Th2 immune responses are enhanced by dietary inulin in pigs infected with Trichuris suis 6 2019 Laura J. Myhill, Sophie Stolzenbach, Tina V. A. Hansen, Kerstin Skovgaard, C. Rune Stensvold, Lee O'Brien Andersen, Peter Nejsum, Helena Mejer, Stig M. Thamsborg, Andrew R. Williams false 2 PRJEB29079 0 0 0 In this study, authors investigated the colon microbiota profile of pigs infected with the whipworm Trichuris suis and feeded with inulin. <_link_ParasiteSpecies>4 <_link_InfectedSpecies>4 <_link_SampleSite>128 2019-08-05T11:28:11.36+00:00 true 104 b82fe7e3-7e91-43ad-869d-b6d24b158ec6 2019_15 0 1 8 10.3389/fcimb.2019.00217 Sequential Changes in the Host Gut Microbiota During Infection With the Intestinal Parasitic Nematode Strongyloides venezuelensis 0 2019 Tanzila Afrin, Kazunori Murase, Asuka Kounosu, Vicky L. Hunt, Mark Bligh, Yasunobu Maeda, Akina Hino, Haruhiko Maruyama, Isheng J. Tsai, and Taisei Kikuchi true 0 SAMD00148911 0 0 0 TODO 2020-04-25 <_link_ParasiteSpecies>24 <_link_InfectedSpecies>1 <_link_SampleType>2 2020-05-24T15:33:57.04+00:00 true 105 2a889f5c-dfb2-4e84-9410-72700b9cba3a 2019_16 0 1 8 10.1038/s41598-019-44301-4 Cognitive and Microbiome Impacts of Experimental Ancylostoma ceylanicum Hookworm Infections in Hamsters 22 2019 Samuel C. Pan, Doyle V. Ward, Yunqiang Yin, Yan Hu, Mostafa A. Elfawal, Robert E. Clark, and Raffi V. Aroian true 0 PRJNA535443 0 0 0 Here, authors studied the impact of a human hookworm parasite, Ancylostoma ceylanicum, in hamster gut microbiome <_link_ParasiteSpecies>0 <_link_InfectedSpecies>7 <_link_SampleType>2 2020-05-24T15:38:08.09+00:00 true 106 ccb10f63-dce8-4001-809b-2f1a19645940 2019_17 0 1 8 10.1016/j.ijpara.2018.10.007 Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome. 11 2019 Yueying Wang, Fang Liu, Joseph F. UrbanJr., Oonagh Paerewijck, Peter Geldhof, Robert W.Li false 0 SRP127199 0 0 0 In the present study, authors analized the effect of infection of Ascaris suum on the microbial composition in pigs <_link_ParasiteSpecies>0 <_link_InfectedSpecies>4 <_link_SampleSite>128 <_link_SampleType>2 2020-05-24T16:05:40.39+00:00 true 107 9ec071f6-b707-45e4-845a-e44bac977771 2019_18 0 2 64 10.3389/fgene.2019.01028 The Effect of Gut Microbiome Composition on Human Immune Responses: An Exploration of Interference by Helminth Infections 0 2019 Ivonne Martin, Maria M. M. Kaisar,  Aprilianto E. Wiria,Firdaus Hamid, Yenny Djuardi, Erliyani Sartono, Bruce A. Rosa,  Makedonka Mitreva, Taniawati Supali, Jeanine J. Houwing-Duistermaat,  Maria Yazdanbakhsh, and Linda J. Wammes true 0 SAMN07688522 to SAMN07688545 0 0 0 In this study authors aim to analyze the relationship between bacterial communities with cytokine response in the presence or absence of helminth infections. gcdsdbchj fr <_link_InfectedSpecies>5 <_link_SampleType>2 2020-05-24T16:14:27.27+00:00 true 108 30d238fd-10c7-4a98-ab5b-3f9b2e449b2a 2019_19 0 2 8 10.1371/journal.ppat.1008066 Linking the effects of helminth infection, diet and the gut microbiota with human whole-blood signatures 19 2019 Soo Ching Lee, Mei San Tang, Alice V. Easton, Joseph Cooper Devlin, Ling Ling Chua, Ilseung Cho, Foong Ming Moy, Tsung Fei Khang, Yvonne A. L. Lim , P’ng Loke true 2 PRJEB34956 and PRJEB34957 0 0 0 Here authors analyzed the relationship between fecal microbiota and Trichuris trichiura infection inindigenous Malaysians, referred to locally as Orang Asli, and urban participants from the capital city of Malaysia, Kuala Lumpur <_link_ParasiteSpecies>3 <_link_InfectedSpecies>5 <_link_SampleType>2 2020-05-24T16:26:32.5+00:00 true 109 22ae3c60-7388-42bf-a87c-e4168520f980 2019_20 0 1 8 10.1016/j.jmii.2019.09.009 Trichinella spiralis infection decreases the diversity of the intestinal flora in the infected mouse. 0 2019 Sha Liu, Jin Pan, Xiangli Meng, Junping Zhu, Jie Zhou, Xinping Zhu true 0 PRJNA479716 and PRJNA553325 0 0 0 This study aimed to explore the effect of Trichinella spiralis infection on the intestinal flora in mice <_link_ParasiteSpecies>8 <_link_InfectedSpecies>1 <_link_SampleSite>0 <_link_SampleType>0 2020-05-24T16:31:22.61+00:00 true 110 b4cad7cc-6793-4e94-9fe9-09de05b5950a 2019_21 0 2 8 10.1016/j.meegid.2019.104010. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal 0 2019 Justinn Renelies-Hamilton, Marc Noguera-Julian, Mariona Parera, Roger Paredes, Liliana Pacheco, Elena Dacal, José M.Saugar, José M.Rubio, Michael Poulsen, Pamela C.Köster, David Carmena false 6 PRJNA523828 0 0 0 Authors studied the interaction between gut microbiome and enteric parasites in chimpanzees. <_link_ParasiteSpecies>22 <_link_InfectedSpecies>26 <_link_SampleType>2 2020-05-24T16:35:45.6+00:00 true 111 5ab8a210-c065-4a95-bcd2-d84ebd8dc423 2020_1 0 1 16 10.1016/j.vetmic.2020.108607 Gut microbial signatures associated with moxidectin treatment efficacy of Haemonchus contortus in infected goats. 0 2020 Fang Liu, Yue Xie, Anne M.Zajac, Yan Hu, Raffi V.Aroian, Joseph F.Urban Jr., Robert W.Li false 6 PRJNA564780 0 0 0 In this study, authors examined the microbial composition and function in the abomasum, proximal colon and feces of Haemonchus contortus-infected goats after a partial anthelmintic drug clearance. <_link_ParasiteSpecies>16 <_link_InfectedSpecies>15 <_link_SampleSite>16 2020-05-24T16:40:13.87+00:00 true 112 30dfbec5-f0ae-4ebc-9b0d-c7edbb6ef6b8 2020_2 0 1 8 10.1016/j.ijpara.2019.09.005 Infection with a small intestinal helminth, Heligmosomoides polygyrus bakeri, consistently alters microbial communities throughout the murine small and large intestine. 11 2020 Alexis Rapin, Audrey Chuat, Luc Lebon, Mario M. Zaiss, Benjamin J. Marsland, Nicola L. Harris true 0 PRJEB32288 0 0 0 In the present study, author performed a comprehensive analysis of the impact of intestinal helminth infection on the mammalian intestinal bacterial microbiome. For this purpose, they investigated the impact of experimental infection using the natural murine small intestinal helminth, Heligmosomoides polygyrus and examined possible alterations in both the mucous and luminal bacterial communities along the entire small and large intestine. <_link_ParasiteSpecies>1 <_link_InfectedSpecies>1 <_link_SampleSite>128 <_link_SampleType>2 2020-05-24T19:24:42.52+00:00 true 113 8ef7bb1d-f88e-4321-8b4b-fd859f0d5079 2020_3 0 1 8 10.1038/s41396-020-0589-3 The gut microbiota response to helminth infection depends on host sex and genotype. 26 2020 Fei Ling, Natalie Steinel, Jesse Weber, Lei Ma, Chris Smith, Decio Correa, Bin Zhu, Daniel Bolnick & Gaoxue Wang false 10 PRJNA398629 and PRJNA398630 0 0 0 In this study, authors experimentally exposed Gasterosteus aculeatus to their naturally co-evolved parasite, Schistocephalus solidus. <_link_ParasiteSpecies>0 <_link_InfectedSpecies>25 <_link_SampleSite>8 2020-05-24T19:29:00.89+00:00 true 114 4e838267-a325-452b-bbde-554a12aca08e 2020_4 0 1 8 10.1080/19490976.2019.1688065 Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. 9 2020 Adam Shute, Arthur Wang, Timothy S. Jayme, Marc Strous, Kathy D. McCoy, Andre G. Buret, Derek M. McKay false 0 missing 0 0 0 In this study, authors analized the interaction between the tapeworm Hymenolepis diminuta and the gut microbiome in mice. <_link_ParasiteSpecies>13 <_link_InfectedSpecies>1 <_link_SampleSite>128 <_link_SampleType>2 2020-05-24T19:34:02.73+00:00 true 115 3bac3628-8010-4fdc-b224-141b96e657f2 2020_5 0 1 8 10.1186/s40168-020-00818-9 Infection with the sheep gastrointestinal nematode Teladorsagia circumcincta increases luminal pathobionts 0 2020 Alba Cortés, John Wills, Xiaopei Su, Rachel E. Hewitt, Jack Robertson, Riccardo Scotti, Daniel R. G. Price, Yvonne Bartley, Tom N. McNeilly, Lutz Krause, Jonathan J. Powell, Alasdair J. Nisbet, Cinzia Cantacessi true 2 PRJEB33114 0 0 0 In this study, authors investigated the fluctuations in microbiota composition of sheep vaccinated against, and experimentally infected with, the ‘brown stomach worm’ Teladorsagia circumcincta. <_link_ParasiteSpecies>144 <_link_InfectedSpecies>20 <_link_SampleType>2 2020-05-24T19:37:54.61+00:00 true 116 87ccc1d8-f69b-460c-9b48-5a1a575122ad 2020_6 0 1 8 10.21203/rs.2.24428/v1 Experimental infection with the hookworm, Necator americanus, promotes gut microbial diversity in human volunteers with relapsing multiple sclerosis 0 2020 Timothy Jenkins, David Pritchard, Radu Tanasescu, Gary Telford, Marina Paraiakovou, Cris Constantinescu, Cinzia Cantacessi true 3 10.17632/pkk4vtc57r.1 0 0 0 In the present study authors investigated qualitative and quantitative changes in gut microbial composition of human volunteers with remitting multiple sclerosis (RMS) prior to and following experimental infection with the human hookworm, Necator americanus, and following anthelmintic treatment, and compared the findings with data obtained from a cohort of RMS patients subjected to placebo treatment (PBO) <_link_ParasiteSpecies>9 <_link_InfectedSpecies>5 <_link_SampleType>2 2020-05-24T19:46:02.09+00:00 true 49 11 2 49 21 1 56 14 1 58 2 1 58 17 1 58 20 1 62 3 1 62 10 2 66 3 2 66 6 1 68 4 1 68 12 1 71 7 1 71 14 2 72 21 1 73 17 1 74 11 2 74 21 1 75 13 1 75 19 2 78 9 2 78 16 2 79 0 82 3 2 82 6 1 90 1 1 90 5 2 90 6 2 90 8 1 90 13 1 90 15 2 90 17 2 90 18 1 100 6 1 48 14 1 48 18 2 49 29 2 50 6 1 50 14 2 50 19 1 52 2 2 52 11 1 52 29 1 52 36 1 56 12 1 57 14 2 57 16 2 57 18 1 57 19 1 57 32 2 57 36 1 58 3 2 58 27 1 58 37 1 60 12 1 60 19 1 62 14 2 62 19 1 64 6 2 64 8 1 64 19 1 64 30 2 64 37 1 64 39 2 65 19 1 65 37 1 66 30 1 68 33 1 68 42 1 69 2 2 69 9 1 69 22 1 69 31 2 69 36 2 70 18 2 71 7 1 71 13 1 72 2 2 72 12 1 72 23 1 72 41 1 73 13 1 73 14 2 73 36 1 74 2 1 74 6 2 74 8 1 74 18 1 74 19 1 74 32 1 74 41 1 75 1 2 75 4 2 75 5 2 75 17 1 75 29 2 76 0 78 2 2 78 24 2 79 12 2 79 23 1 79 33 1 79 34 2 79 36 1 79 39 1 83 18 2 84 6 1 84 14 2 84 26 1 84 32 2 84 35 2 84 37 2 84 38 2 85 19 1 87 41 1 88 33 2 88 35 2 89 2 2 89 33 1 90 3 1 90 10 1 90 14 2 90 25 1 90 28 1 90 29 1 90 33 1 90 36 2 90 40 1 98 43 2 100 2 1 100 6 2 100 18 2 100 32 1 100 36 1 101 12 1 101 13 1 101 19 1 102 13 2 102 19 2 102 33 2 102 44 2 102 45 2 102 46 2 48 8 1 48 29 1 48 32 1 48 37 1 48 42 2 48 74 1 48 89 2 48 104 1 49 13 1 51 46 1 51 102 2 52 13 2 52 83 2 52 92 2 53 4 2 53 19 2 53 22 1 53 39 2 53 48 2 53 49 2 53 72 2 53 92 2 53 98 2 53 107 2 53 108 2 54 11 2 54 18 2 54 33 2 54 37 1 54 39 2 54 47 2 54 70 1 54 75 2 54 76 2 54 81 1 54 83 2 54 92 2 54 94 2 54 95 2 54 98 2 54 99 2 54 104 2 55 29 1 55 101 1 56 13 1 56 58 1 57 1 1 57 58 1 57 79 1 57 85 2 58 17 2 58 25 2 62 8 2 62 15 2 62 21 1 62 54 1 62 58 1 62 70 1 62 76 1 62 82 1 62 91 2 62 97 1 63 71 1 63 80 2 63 84 2 66 110 2 67 13 2 67 18 1 67 24 1 67 29 1 67 51 1 67 55 1 67 86 2 67 87 1 68 84 1 69 13 2 69 36 1 69 61 1 69 92 2 70 103 1 71 20 2 71 32 1 71 39 1 71 42 1 71 56 2 71 58 1 71 92 1 72 7 1 72 13 2 72 60 1 73 105 2 73 110 2 74 5 1 74 7 1 74 8 2 74 13 1 74 39 1 74 58 1 74 77 1 74 80 1 74 110 2 75 22 2 75 50 2 75 57 1 76 7 1 76 13 1 76 18 1 76 29 2 76 43 2 76 47 2 76 58 2 78 16 2 78 35 2 78 66 2 78 88 2 79 83 1 79 87 2 79 110 1 80 84 1 81 84 1 83 2 1 83 12 1 83 22 1 83 30 1 83 31 2 83 78 1 83 87 1 83 92 2 85 84 1 86 6 1 86 13 2 86 17 2 86 23 1 86 27 1 86 28 1 86 29 2 86 38 2 86 39 1 86 40 2 86 41 2 86 42 1 86 44 1 86 57 1 86 62 1 86 64 2 86 67 2 86 68 1 86 73 1 86 80 2 86 81 2 86 89 2 86 92 1 86 97 1 86 100 1 86 111 1 86 112 2 87 7 1 87 45 2 87 58 2 87 60 2 89 13 2 89 84 1 90 3 1 90 9 1 90 29 2 90 34 1 90 37 1 90 38 1 90 53 1 90 64 1 90 69 2 90 74 1 90 80 2 90 83 1 90 84 1 90 102 2 91 58 1 92 12 1 92 17 1 92 26 1 92 52 1 92 63 1 92 65 1 92 74 1 92 90 1 92 93 1 92 96 1 92 102 2 92 106 1 95 13 1 95 113 1 97 3 2 98 17 2 98 39 2 98 58 2 98 74 2 99 12 1 99 45 1 101 42 1 101 45 1 0 93 0 94 0 95 0 96 0 97 0 98 0 99 0 100 0 101 0 102 0 103 0 104 0 105 0 106 0 107 0 108 0 109 0 111 0 112 0 114 0 115 0 116 1 49 1 50 1 56 1 60 1 62 1 63 1 64 1 74 1 76 1 84 1 88 1 91 2 51 3 52 4 53 4 54 4 85 5 48 5 55 5 58 5 59 5 61 5 68 5 72 5 75 5 77 5 78 5 81 5 86 5 89 5 90 7 57 11 65 12 66 12 73 12 82 12 87 13 67 13 71 13 92 14 69 15 70 19 79 19 83 20 80 24 67 24 92 25 113 26 110 49 2 1 49 6 1 49 15 1 49 23 2 49 24 1 52 2 2 52 5 1 52 8 1 58 2 1 58 3 2 58 19 1 62 10 2 62 15 1 68 2 1 68 11 1 70 17 1 71 6 1 71 15 1 72 24 1 74 2 1 74 6 1 74 15 1 74 23 2 74 24 1 75 1 2 75 4 2 75 5 2 75 12 1 76 0 78 14 1 78 16 2 78 21 2 79 9 2 79 18 2 79 23 2 90 5 2 90 7 1 90 12 1 90 13 2 90 17 1 90 18 1 90 20 2 90 22 1 100 5 1 48 3 48 9 48 19 49 20 50 1 51 2 52 3 53 4 54 4 56 1 57 7 58 8 58 81 58 82 59 9 60 1 61 9 62 10 63 10 64 11 65 1 65 12 65 13 66 13 67 31 67 142 68 9 69 15 70 16 71 17 72 3 72 9 72 18 72 19 73 13 74 20 75 20 76 1 77 3 77 9 77 18 77 19 77 22 78 22 79 23 80 16 82 13 83 24 84 25 85 4 86 26 87 13 88 10 89 3 89 19 89 30 89 31 89 39 89 143 90 27 91 26 92 31 92 142 94 145 100 147 100 148 102 146 105 0 106 0 113 0 113 156 115 144 48 3 2 48 9 2 49 16 1 52 3 2 52 15 1 53 8 2 53 11 2 53 14 2 53 15 2 54 5 1 57 14 2 62 0 63 3 2 64 1 1 64 2 1 64 9 2 65 2 2 65 9 1 69 9 2 69 13 1 69 14 1 70 7 2 71 1 1 74 16 1 75 10 1 75 13 1 75 16 2 76 3 1 76 9 2 77 1 1 77 3 2 78 6 2 78 7 2 79 4 1 84 2 2 84 9 1 85 3 1 85 9 2 86 3 2 86 5 1 86 15 2 88 3 2 88 9 1 90 4 2 90 9 2 90 13 1 90 15 2 93 2 1 93 9 1 93 17 1 94 2 2 94 9 1 97 2 1 97 13 2 99 9 1 99 13 1 100 9 2 100 13 2 102 2 2 49 8 50 2 50 2048 51 16 52 128 53 128 54 128 56 2 56 128 56 2048 57 512 57 1024 60 32 62 2 64 64 65 2 65 128 65 256 65 2048 66 2 68 32 69 32 70 16 74 8 74 64 80 4 80 16 82 2 84 2 85 128 88 2 98 0 99 0 109 0 48 2 49 8 50 16 51 8 52 64 52 256 53 8 54 8 56 8 57 8 58 2 59 2 60 2 60 8 61 2 62 2 62 8 63 2 64 2 64 8 65 8 65 16 66 8 67 2 68 64 69 16 70 8 71 2 72 2 73 2 74 8 75 2 76 2 77 2 78 2 79 2 80 4 81 2 83 2 86 2 87 2 89 2 90 2 91 2 92 2 109 0 49 1 1 49 2 1 62 0 64 3 2 70 9 1 72 1 1 74 1 1 74 2 1 74 7 1 74 8 1 75 5 1 76 3 1 84 2 2 84 4 2 84 6 1 84 7 1 86 3 1 91 7 1 0 TODO true d167b104-9c99-e911-abc4-000d3a228e9c 1 Brown Digital Repository true d267b104-9c99-e911-abc4-000d3a228e9c 2 European Nucleotide Archive (ENA) true d367b104-9c99-e911-abc4-000d3a228e9c 3 Mendeley true d467b104-9c99-e911-abc4-000d3a228e9c 4 MG-RAST true d567b104-9c99-e911-abc4-000d3a228e9c 5 Missing true d667b104-9c99-e911-abc4-000d3a228e9c 6 National Center for Biotechnology Information (NCBI) true d767b104-9c99-e911-abc4-000d3a228e9c 7 Nematode.net true d867b104-9c99-e911-abc4-000d3a228e9c 8 Not applicable (qPCR) true d967b104-9c99-e911-abc4-000d3a228e9c 9 DDBJ true 2824263d-5e9e-ea11-96d2-281878342aac 10 SRA true 2c176d4b-5e9e-ea11-96d2-281878342aac 0 None - no change true da67b104-9c99-e911-abc4-000d3a228e9c 1 Increase true db67b104-9c99-e911-abc4-000d3a228e9c 2 Decrease true dc67b104-9c99-e911-abc4-000d3a228e9c 4 Not assessed true dd67b104-9c99-e911-abc4-000d3a228e9c 1 Experimental true de67b104-9c99-e911-abc4-000d3a228e9c 2 Natural true df67b104-9c99-e911-abc4-000d3a228e9c 0 UNKNOWN true e067b104-9c99-e911-abc4-000d3a228e9c 1 Mouse (Mus musculus) true e167b104-9c99-e911-abc4-000d3a228e9c 2 Cattle (Bos taurus) true e267b104-9c99-e911-abc4-000d3a228e9c 3 Macaca mulatta - captive true e367b104-9c99-e911-abc4-000d3a228e9c 4 Pig (Sus scrofa domestica) true e467b104-9c99-e911-abc4-000d3a228e9c 5 Human (Homo Sapiens) true e567b104-9c99-e911-abc4-000d3a228e9c 7 Hamster (Mesocricetus auratus) true e667b104-9c99-e911-abc4-000d3a228e9c 11 Wild yellow-necked mouse (Apodemus flavicollis) true e767b104-9c99-e911-abc4-000d3a228e9c 12 Rat (Rattus norvegicus) true e867b104-9c99-e911-abc4-000d3a228e9c 13 Cat (Felis catus) true e967b104-9c99-e911-abc4-000d3a228e9c 14 Rabbits (Oryctolagus cuniculus) true ea67b104-9c99-e911-abc4-000d3a228e9c 15 Alpine Goat (Capra aegagrus hircus) true eb67b104-9c99-e911-abc4-000d3a228e9c 19 Horse (Equus ferus caballus) true ec67b104-9c99-e911-abc4-000d3a228e9c 20 Sheep (Ovis aries) true ed67b104-9c99-e911-abc4-000d3a228e9c 24 Dog (Canis lupus familiaris) true ee67b104-9c99-e911-abc4-000d3a228e9c 25 Three-spined stickleback (Gasterosteus aculeatus) true d2d115f7-5c9e-ea11-96d2-281878342aac 26 Chimpanzees (Pan troglodytes verus) true 09bf0207-5d9e-ea11-96d2-281878342aac 0 TODO true ef67b104-9c99-e911-abc4-000d3a228e9c 1 Infection and Immunity (WAS: American Society for Microbiology Journals) true f067b104-9c99-e911-abc4-000d3a228e9c 2 Microbiome true f167b104-9c99-e911-abc4-000d3a228e9c 3 Parasites & Vectors true f267b104-9c99-e911-abc4-000d3a228e9c 4 Brain, Behavior, and Immunity true f367b104-9c99-e911-abc4-000d3a228e9c 5 Experimental Parasitology true f467b104-9c99-e911-abc4-000d3a228e9c 6 Frontiers in Immunology true f567b104-9c99-e911-abc4-000d3a228e9c 7 Frontiers in Microbiology true f667b104-9c99-e911-abc4-000d3a228e9c 8 Frontiers in Physiology true f767b104-9c99-e911-abc4-000d3a228e9c 9 Gut Microbes true f867b104-9c99-e911-abc4-000d3a228e9c 10 Inflammatory Bowel Diseases true f967b104-9c99-e911-abc4-000d3a228e9c 11 International Journal for Parasitology true fa67b104-9c99-e911-abc4-000d3a228e9c 13 Mucosal Immunology true fb67b104-9c99-e911-abc4-000d3a228e9c 14 Parasitology Research true fc67b104-9c99-e911-abc4-000d3a228e9c 15 Parasitology true fd67b104-9c99-e911-abc4-000d3a228e9c 16 PeerJ — the Journal of Life and Environmental Sciences true fe67b104-9c99-e911-abc4-000d3a228e9c 17 Philosophical Transactions of the Royal Society London B: Biolological Sciences true ff67b104-9c99-e911-abc4-000d3a228e9c 18 PLoS Neglected Tropical Diseases true 0068b104-9c99-e911-abc4-000d3a228e9c 19 PLoS Pathogens true 0168b104-9c99-e911-abc4-000d3a228e9c 20 PLoS One true 0268b104-9c99-e911-abc4-000d3a228e9c 21 Science Advances true 0368b104-9c99-e911-abc4-000d3a228e9c 22 Scientific Reports true 0468b104-9c99-e911-abc4-000d3a228e9c 23 The FASEB Journal true 0568b104-9c99-e911-abc4-000d3a228e9c 24 The Journal of Infectious Diseases true 0668b104-9c99-e911-abc4-000d3a228e9c 25 Veterinary Research Communications true 0768b104-9c99-e911-abc4-000d3a228e9c 26 The ISME Journal true 57addbd1-8cb1-e911-bcd0-000d3a22804e 27 Cells true 58addbd1-8cb1-e911-bcd0-000d3a22804e 28 mBio true e7497fdb-8cb1-e911-bcd0-000d3a22804e 29 The American Journal of Tropical Medicine and Hygiene true 730d49ed-8cb1-e911-bcd0-000d3a22804e 30 Nature Communications Volume true 46075dfc-8cb1-e911-bcd0-000d3a22804e 31 Veterinary Microbiology true d4f6444e-d29d-ea11-96d2-281878342aac 32 Frontiers in Cellular and Infection Microbiology true 411cd659-d29d-ea11-96d2-281878342aac 33 Front. Genet true 9c6db766-d29d-ea11-96d2-281878342aac 34 Infection, Genetics and Evolution true 83391373-d29d-ea11-96d2-281878342aac 35 Gut microbes Journal true d8c1ba7d-d29d-ea11-96d2-281878342aac 36 mSystems true d9c1ba7d-d29d-ea11-96d2-281878342aac 37 Journal of Microbiology, Immunology and Infection true d564eb8c-d29d-ea11-96d2-281878342aac 0 TODO true 0868b104-9c99-e911-abc4-000d3a228e9c 1 Heligmosomoides polygyrus true 0968b104-9c99-e911-abc4-000d3a228e9c 2 Ostertagia ostertagi true 0a68b104-9c99-e911-abc4-000d3a228e9c 3 Trichuris trichiura true 0b68b104-9c99-e911-abc4-000d3a228e9c 4 Trichuris suis true 0c68b104-9c99-e911-abc4-000d3a228e9c 7 Opisthorchis viverrini true 0d68b104-9c99-e911-abc4-000d3a228e9c 8 Trichuris spp. true 0e68b104-9c99-e911-abc4-000d3a228e9c 9 Necator americanus true 0f68b104-9c99-e911-abc4-000d3a228e9c 10 Trichuris muris true 1068b104-9c99-e911-abc4-000d3a228e9c 11 Nippostrongylus brasiliensis true 1168b104-9c99-e911-abc4-000d3a228e9c 12 Syphacia spp. true 1268b104-9c99-e911-abc4-000d3a228e9c 13 Hymenolepis diminuta true 1368b104-9c99-e911-abc4-000d3a228e9c 14 Trichuris vulpis true 1468b104-9c99-e911-abc4-000d3a228e9c 15 Trichostrongylus retortaeformis true 1568b104-9c99-e911-abc4-000d3a228e9c 16 Haemonchus contortus true 1668b104-9c99-e911-abc4-000d3a228e9c 17 Toxocara cati true 1768b104-9c99-e911-abc4-000d3a228e9c 18 Ancylostoma duodenale true 1868b104-9c99-e911-abc4-000d3a228e9c 19 Ascaris lumbricoides true 1968b104-9c99-e911-abc4-000d3a228e9c 20 Schistosoma mansoni true 1a68b104-9c99-e911-abc4-000d3a228e9c 22 Strongyloides stercoralis true 1b68b104-9c99-e911-abc4-000d3a228e9c 23 Cyathostominae true 1c68b104-9c99-e911-abc4-000d3a228e9c 24 Strongyles true 1d68b104-9c99-e911-abc4-000d3a228e9c 25 Metagonimus yokogawai true 1e68b104-9c99-e911-abc4-000d3a228e9c 26 Clonorchis sinensis true 1f68b104-9c99-e911-abc4-000d3a228e9c 27 Schistosoma haematobium true 2068b104-9c99-e911-abc4-000d3a228e9c 30 Enterobius vermicularis true 2168b104-9c99-e911-abc4-000d3a228e9c 31 Giardia intestinalis true 2268b104-9c99-e911-abc4-000d3a228e9c 39 Entamoeba hartmanni true 2368b104-9c99-e911-abc4-000d3a228e9c 81 Ascaris spp. true 2468b104-9c99-e911-abc4-000d3a228e9c 82 Hookworms true 2568b104-9c99-e911-abc4-000d3a228e9c 121 Hymenolepsis spp. true 2668b104-9c99-e911-abc4-000d3a228e9c 141 Cystoisospora rivolta true 2768b104-9c99-e911-abc4-000d3a228e9c 142 Ancylostoma caninum true 2868b104-9c99-e911-abc4-000d3a228e9c 143 Cryptosporidium true 2968b104-9c99-e911-abc4-000d3a228e9c 144 Teladorsagia circumcincta true e0a53f4d-8db1-e911-bcd0-000d3a22804e 145 glutathione S-transferase (P28GST) from Schistosoma true 87d3fd63-8db1-e911-bcd0-000d3a22804e 146 Anoplocephala perfoliata true 510f0896-8db1-e911-bcd0-000d3a22804e 147 ES-62 true b10c8c81-7cb7-e911-bcd0-000d3a228f37 148 glycoprotein from Acanthocheilonema viteae true b20c8c81-7cb7-e911-bcd0-000d3a228f37 150 Ancylostoma ceylanicum true 5b81db4a-5d9e-ea11-96d2-281878342aac 151 Ascaris suum true 1f23ba5a-5d9e-ea11-96d2-281878342aac 152 Trichinella spiralis true 88771f77-5d9e-ea11-96d2-281878342aac 153 Blastocystis sp. true d3e22f9a-5d9e-ea11-96d2-281878342aac 154 Strongyloides spp. true 276131a3-5d9e-ea11-96d2-281878342aac 155 Strongyloides venezuelensis true aae25fb7-5d9e-ea11-96d2-281878342aac 156 Schistocephalus solidus true 0d7788c7-5d9e-ea11-96d2-281878342aac 4 High throughput sequencing of bacterial 16S rRNA amplicons (Roche 454) true 2a68b104-9c99-e911-abc4-000d3a228e9c 8 High throughput sequencing of bacterial 16S rRNA amplicons (Illumina) true 2b68b104-9c99-e911-abc4-000d3a228e9c 16 Whole metagenome shotgun sequencing (Illumina) true 2c68b104-9c99-e911-abc4-000d3a228e9c 32 Whole metagenome shotgun sequencing (Roche 454) true 2d68b104-9c99-e911-abc4-000d3a228e9c 36 Whole metagenome shotgun sequencing (Roche 454), High throughput sequencing of bacterial 16S rRNA amplicons (Roche 454) true 2e68b104-9c99-e911-abc4-000d3a228e9c 64 Cloning and bacterial 16S rRNA amplicon qPCR true 2f68b104-9c99-e911-abc4-000d3a228e9c 128 Bacterial 16S rRNA qPCR true 3068b104-9c99-e911-abc4-000d3a228e9c 256 High throughput sequencing of 16S rRNA amplicons (Ion Torrent) true 3168b104-9c99-e911-abc4-000d3a228e9c 0 None true 3268b104-9c99-e911-abc4-000d3a228e9c 2 Caecum true 3368b104-9c99-e911-abc4-000d3a228e9c 4 Rumen true 3468b104-9c99-e911-abc4-000d3a228e9c 8 Large intestine true 3568b104-9c99-e911-abc4-000d3a228e9c 16 Abomasum true 3668b104-9c99-e911-abc4-000d3a228e9c 32 Duodenum true 3768b104-9c99-e911-abc4-000d3a228e9c 64 Small intestine true 3868b104-9c99-e911-abc4-000d3a228e9c 128 Colon true 3968b104-9c99-e911-abc4-000d3a228e9c 256 Stomach true 3a68b104-9c99-e911-abc4-000d3a228e9c 512 Bile ducts true 3b68b104-9c99-e911-abc4-000d3a228e9c 1024 Colorectum true 3c68b104-9c99-e911-abc4-000d3a228e9c 2048 Ileum true 3d68b104-9c99-e911-abc4-000d3a228e9c 2050 COMPOUND: ileum, caecum true 3e68b104-9c99-e911-abc4-000d3a228e9c 2178 COMPOUND: ileum, caecum, colon true 3f68b104-9c99-e911-abc4-000d3a228e9c 4096 Liver true eaaa241b-72b7-e911-bcd0-000d3a228f37 0 None true 4068b104-9c99-e911-abc4-000d3a228e9c 2 Faeces true 4168b104-9c99-e911-abc4-000d3a228e9c 4 Fluids true 4268b104-9c99-e911-abc4-000d3a228e9c 8 Lumen true 4368b104-9c99-e911-abc4-000d3a228e9c 16 Mucosa true 4468b104-9c99-e911-abc4-000d3a228e9c 64 Biopsy true 4568b104-9c99-e911-abc4-000d3a228e9c 256 Blood true 4668b104-9c99-e911-abc4-000d3a228e9c 0 -- N/A -- true 4768b104-9c99-e911-abc4-000d3a228e9c 1 Actinobacteria true 4868b104-9c99-e911-abc4-000d3a228e9c 2 Alphaproteobacteria true 4968b104-9c99-e911-abc4-000d3a228e9c 3 Bacilli true 4a68b104-9c99-e911-abc4-000d3a228e9c 4 Bacteroidia true 4b68b104-9c99-e911-abc4-000d3a228e9c 5 Betaproteobacteria true 4c68b104-9c99-e911-abc4-000d3a228e9c 6 Clostridia true 4d68b104-9c99-e911-abc4-000d3a228e9c 7 Coreobacteriia true 4e68b104-9c99-e911-abc4-000d3a228e9c 8 Deltaproteobacteria true 4f68b104-9c99-e911-abc4-000d3a228e9c 9 Endomicrobia true 5068b104-9c99-e911-abc4-000d3a228e9c 10 Erysipelotrichi true 5168b104-9c99-e911-abc4-000d3a228e9c 11 Erysipelotrichia true 5268b104-9c99-e911-abc4-000d3a228e9c 12 Flavobacteria true 5368b104-9c99-e911-abc4-000d3a228e9c 13 Fusobacteriia true 5468b104-9c99-e911-abc4-000d3a228e9c 14 Gammaproteobacteria true 5568b104-9c99-e911-abc4-000d3a228e9c 15 Melainabacteria true 5668b104-9c99-e911-abc4-000d3a228e9c 16 Methanomicrobia true 5768b104-9c99-e911-abc4-000d3a228e9c 17 Mollicutes true 5868b104-9c99-e911-abc4-000d3a228e9c 18 Negativicutes true 5968b104-9c99-e911-abc4-000d3a228e9c 19 Opitutae true 5a68b104-9c99-e911-abc4-000d3a228e9c 20 Tenericutes true 5b68b104-9c99-e911-abc4-000d3a228e9c 21 Verrucomicrobiae true 5c68b104-9c99-e911-abc4-000d3a228e9c 0 -- N/A -- true 5d68b104-9c99-e911-abc4-000d3a228e9c 1 Increase true 2 Decrease true 0 -- N/A -- true 5e68b104-9c99-e911-abc4-000d3a228e9c 1 Anaeroplasmataceae true 5f68b104-9c99-e911-abc4-000d3a228e9c 2 Bacteroidaceae true 6068b104-9c99-e911-abc4-000d3a228e9c 3 Bifidobacteriaceae true 6168b104-9c99-e911-abc4-000d3a228e9c 4 Campylobacteraceae true 6268b104-9c99-e911-abc4-000d3a228e9c 5 Cerasiococcaceae true 6368b104-9c99-e911-abc4-000d3a228e9c 6 Clostridiaceae true 6468b104-9c99-e911-abc4-000d3a228e9c 7 Coriobacteriaceae true 6568b104-9c99-e911-abc4-000d3a228e9c 8 Coriobacteriaceae true 6668b104-9c99-e911-abc4-000d3a228e9c 9 Desulfobacteraceae true 6768b104-9c99-e911-abc4-000d3a228e9c 10 Desulfovibrionaceae true 6868b104-9c99-e911-abc4-000d3a228e9c 11 Elusimicrobiaceae true 6968b104-9c99-e911-abc4-000d3a228e9c 12 Enterobacteriaceae true 6a68b104-9c99-e911-abc4-000d3a228e9c 13 Enterococcaceae true 6b68b104-9c99-e911-abc4-000d3a228e9c 14 Erysipelotrichaceae true 6c68b104-9c99-e911-abc4-000d3a228e9c 15 Erysipelotrichaceaeileum true 6d68b104-9c99-e911-abc4-000d3a228e9c 16 Eubacteriaceae true 6e68b104-9c99-e911-abc4-000d3a228e9c 17 Fusobacteriaceae true 6f68b104-9c99-e911-abc4-000d3a228e9c 18 Lachnospiraceae true 7068b104-9c99-e911-abc4-000d3a228e9c 19 Lactobacillaceae true 7168b104-9c99-e911-abc4-000d3a228e9c 20 Lactobacilluscrispatus true 7268b104-9c99-e911-abc4-000d3a228e9c 21 Lactobacilluskitasatonis true 7368b104-9c99-e911-abc4-000d3a228e9c 22 Leptospiraceae true 7468b104-9c99-e911-abc4-000d3a228e9c 23 Leuconostocaceae true 7568b104-9c99-e911-abc4-000d3a228e9c 24 Methanocorpusculaceae true 7668b104-9c99-e911-abc4-000d3a228e9c 25 Moraxellaceae true 7768b104-9c99-e911-abc4-000d3a228e9c 26 Odoribacteraceae true 7868b104-9c99-e911-abc4-000d3a228e9c 27 Paraprevotellaceae true 7968b104-9c99-e911-abc4-000d3a228e9c 28 Pasteurellaceae true 7a68b104-9c99-e911-abc4-000d3a228e9c 29 Peptococcaceae true 7b68b104-9c99-e911-abc4-000d3a228e9c 30 Peptostreptococcaceae true 7c68b104-9c99-e911-abc4-000d3a228e9c 31 Phyromonadaceae true 7d68b104-9c99-e911-abc4-000d3a228e9c 32 Porphyromonadaceae true 7e68b104-9c99-e911-abc4-000d3a228e9c 33 Prevotellaceae true 7f68b104-9c99-e911-abc4-000d3a228e9c 34 Pseudomonadaceae true 8068b104-9c99-e911-abc4-000d3a228e9c 35 Rikenellaceae true 8168b104-9c99-e911-abc4-000d3a228e9c 36 Ruminococcaceae true 8268b104-9c99-e911-abc4-000d3a228e9c 37 S24-7 true 8368b104-9c99-e911-abc4-000d3a228e9c 38 Sutterellaceae true 8468b104-9c99-e911-abc4-000d3a228e9c 39 Turicibacteraceae true 8568b104-9c99-e911-abc4-000d3a228e9c 40 Veillonellaceae true 8668b104-9c99-e911-abc4-000d3a228e9c 41 Verrucomicrobiaceae true 8768b104-9c99-e911-abc4-000d3a228e9c 42 Weeksellacea true 8868b104-9c99-e911-abc4-000d3a228e9c 43 Lachnospiracaea true 3af71061-46f2-e911-a40b-281878345184 44 Mogibacteriaceae true df6eb5ed-48f2-e911-a40b-281878345184 45 Dehalobacteriaceae true e06eb5ed-48f2-e911-a40b-281878345184 46 Streptococcaceae true e16eb5ed-48f2-e911-a40b-281878345184 0 -- N/A -- true 8968b104-9c99-e911-abc4-000d3a228e9c 1 Acetanaerobacterium true 8a68b104-9c99-e911-abc4-000d3a228e9c 2 Acetivibrio true 8b68b104-9c99-e911-abc4-000d3a228e9c 3 Acinetobacter true 8c68b104-9c99-e911-abc4-000d3a228e9c 4 Actinobacillus true 8d68b104-9c99-e911-abc4-000d3a228e9c 5 Adlercreutzia true 8e68b104-9c99-e911-abc4-000d3a228e9c 6 Agrobacterium true 8f68b104-9c99-e911-abc4-000d3a228e9c 7 Akkermansia true 9068b104-9c99-e911-abc4-000d3a228e9c 8 Allobaculum true 9168b104-9c99-e911-abc4-000d3a228e9c 9 Alloprevotella true 9268b104-9c99-e911-abc4-000d3a228e9c 10 Aquamicrobium true 9368b104-9c99-e911-abc4-000d3a228e9c 11 Asteroleplasma true 9468b104-9c99-e911-abc4-000d3a228e9c 12 Bacillus true 9568b104-9c99-e911-abc4-000d3a228e9c 13 Bacteroides true 9668b104-9c99-e911-abc4-000d3a228e9c 14 Bacteroidescaecum true 9768b104-9c99-e911-abc4-000d3a228e9c 15 Barnsiella true 9868b104-9c99-e911-abc4-000d3a228e9c 16 BF311 true 9968b104-9c99-e911-abc4-000d3a228e9c 17 Bifidobacterium true 9a68b104-9c99-e911-abc4-000d3a228e9c 18 Blautia true 9b68b104-9c99-e911-abc4-000d3a228e9c 19 Brachyspira true 9c68b104-9c99-e911-abc4-000d3a228e9c 20 Bulleidia true 9d68b104-9c99-e911-abc4-000d3a228e9c 21 Butyricicoccus true 9e68b104-9c99-e911-abc4-000d3a228e9c 22 Campylobacter true 9f68b104-9c99-e911-abc4-000d3a228e9c 23 Candidatus Arthromitus true a068b104-9c99-e911-abc4-000d3a228e9c 24 Catenibacterium true a168b104-9c99-e911-abc4-000d3a228e9c 25 CF231 true a268b104-9c99-e911-abc4-000d3a228e9c 26 Chelatococcus true a368b104-9c99-e911-abc4-000d3a228e9c 27 Christensenella true a468b104-9c99-e911-abc4-000d3a228e9c 28 Cloacibacillus true a568b104-9c99-e911-abc4-000d3a228e9c 29 Clostridium true a668b104-9c99-e911-abc4-000d3a228e9c 30 ClostridiumIII true a768b104-9c99-e911-abc4-000d3a228e9c 31 ClsotridiumXIVa true a868b104-9c99-e911-abc4-000d3a228e9c 32 Collinsella true a968b104-9c99-e911-abc4-000d3a228e9c 33 Coprobacillus true aa68b104-9c99-e911-abc4-000d3a228e9c 34 Coriobacteriaceae true ab68b104-9c99-e911-abc4-000d3a228e9c 35 Dehalobacterium true ac68b104-9c99-e911-abc4-000d3a228e9c 36 Desulfocella true ad68b104-9c99-e911-abc4-000d3a228e9c 37 Desulfovibrio true ae68b104-9c99-e911-abc4-000d3a228e9c 38 Dialister true af68b104-9c99-e911-abc4-000d3a228e9c 39 Dorea true b068b104-9c99-e911-abc4-000d3a228e9c 40 Enhydrobacter true b168b104-9c99-e911-abc4-000d3a228e9c 41 Enterobacter true b268b104-9c99-e911-abc4-000d3a228e9c 42 Enterococcus true b368b104-9c99-e911-abc4-000d3a228e9c 43 Enterorhabdus true b468b104-9c99-e911-abc4-000d3a228e9c 44 Epulopiscium true b568b104-9c99-e911-abc4-000d3a228e9c 45 Escherichia true b668b104-9c99-e911-abc4-000d3a228e9c 46 Ethanoligenens true b768b104-9c99-e911-abc4-000d3a228e9c 47 Eubacterium true b868b104-9c99-e911-abc4-000d3a228e9c 48 Fibrobacter true b968b104-9c99-e911-abc4-000d3a228e9c 49 Francisella true ba68b104-9c99-e911-abc4-000d3a228e9c 50 Fructobacillus true bb68b104-9c99-e911-abc4-000d3a228e9c 51 Fusobacterium true bc68b104-9c99-e911-abc4-000d3a228e9c 52 Geobacillus true bd68b104-9c99-e911-abc4-000d3a228e9c 53 Haemophilus true be68b104-9c99-e911-abc4-000d3a228e9c 54 Halomonas true bf68b104-9c99-e911-abc4-000d3a228e9c 55 Howardella true c068b104-9c99-e911-abc4-000d3a228e9c 56 Jeotgalicoccus true c168b104-9c99-e911-abc4-000d3a228e9c 57 Klebsiella true c268b104-9c99-e911-abc4-000d3a228e9c 58 Lactobacillus true c368b104-9c99-e911-abc4-000d3a228e9c 59 Lactobacillusileum true c468b104-9c99-e911-abc4-000d3a228e9c 60 Lactococcus true c568b104-9c99-e911-abc4-000d3a228e9c 61 Leptomena true c668b104-9c99-e911-abc4-000d3a228e9c 62 Leucobacter true c768b104-9c99-e911-abc4-000d3a228e9c 63 Megamonas true c868b104-9c99-e911-abc4-000d3a228e9c 64 Megasphaera true c968b104-9c99-e911-abc4-000d3a228e9c 65 Meiothermus true ca68b104-9c99-e911-abc4-000d3a228e9c 66 Methanocorpusculum true cb68b104-9c99-e911-abc4-000d3a228e9c 67 Methylobacterium true cc68b104-9c99-e911-abc4-000d3a228e9c 68 Microbacterium true cd68b104-9c99-e911-abc4-000d3a228e9c 69 MollicutesRF9 true ce68b104-9c99-e911-abc4-000d3a228e9c 70 Mucispirillum true cf68b104-9c99-e911-abc4-000d3a228e9c 71 Mucospirillium true d068b104-9c99-e911-abc4-000d3a228e9c 72 Mycoplasma true d168b104-9c99-e911-abc4-000d3a228e9c 73 Nevskia true d268b104-9c99-e911-abc4-000d3a228e9c 74 Olsenella true d368b104-9c99-e911-abc4-000d3a228e9c 75 Oribacterium true d468b104-9c99-e911-abc4-000d3a228e9c 76 Oscillibacter true d568b104-9c99-e911-abc4-000d3a228e9c 77 Oscillospira true d668b104-9c99-e911-abc4-000d3a228e9c 78 Paludibacter true d768b104-9c99-e911-abc4-000d3a228e9c 79 Papilibacter true d868b104-9c99-e911-abc4-000d3a228e9c 80 Parabacteroides true d968b104-9c99-e911-abc4-000d3a228e9c 81 Paraprevotella true da68b104-9c99-e911-abc4-000d3a228e9c 82 Parasutterella true db68b104-9c99-e911-abc4-000d3a228e9c 83 Peptococcus true dc68b104-9c99-e911-abc4-000d3a228e9c 84 Prevotella true dd68b104-9c99-e911-abc4-000d3a228e9c 85 Proteiniphilum true de68b104-9c99-e911-abc4-000d3a228e9c 86 Pseudobutyrivibrio true df68b104-9c99-e911-abc4-000d3a228e9c 87 Pseudomonas true e068b104-9c99-e911-abc4-000d3a228e9c 88 RFN20 true e168b104-9c99-e911-abc4-000d3a228e9c 89 Rhodococcus true e268b104-9c99-e911-abc4-000d3a228e9c 90 Rosburia true e368b104-9c99-e911-abc4-000d3a228e9c 91 Roseburia true e468b104-9c99-e911-abc4-000d3a228e9c 92 Ruminococcus true e568b104-9c99-e911-abc4-000d3a228e9c 93 Schlegelella true e668b104-9c99-e911-abc4-000d3a228e9c 94 Schwartzia true e768b104-9c99-e911-abc4-000d3a228e9c 95 Selenomonas true e868b104-9c99-e911-abc4-000d3a228e9c 96 Silanimonas true e968b104-9c99-e911-abc4-000d3a228e9c 97 Sphingomonas true ea68b104-9c99-e911-abc4-000d3a228e9c 98 Spirochaeta true eb68b104-9c99-e911-abc4-000d3a228e9c 99 Sporobacter true ec68b104-9c99-e911-abc4-000d3a228e9c 100 Staphylococcus true ed68b104-9c99-e911-abc4-000d3a228e9c 101 Streptococcus true ee68b104-9c99-e911-abc4-000d3a228e9c 102 Subdoligranulum true ef68b104-9c99-e911-abc4-000d3a228e9c 103 Succiniclasticum true f068b104-9c99-e911-abc4-000d3a228e9c 104 Succinivibrio true f168b104-9c99-e911-abc4-000d3a228e9c 105 Sutterella true f268b104-9c99-e911-abc4-000d3a228e9c 106 Thermomonas true f368b104-9c99-e911-abc4-000d3a228e9c 107 Thermotoga true f468b104-9c99-e911-abc4-000d3a228e9c 108 Treponema true f568b104-9c99-e911-abc4-000d3a228e9c 109 Turibacter true f668b104-9c99-e911-abc4-000d3a228e9c 110 Turicibacter true f768b104-9c99-e911-abc4-000d3a228e9c 111 Variovorax true f868b104-9c99-e911-abc4-000d3a228e9c 112 Veillonella true f968b104-9c99-e911-abc4-000d3a228e9c 113 Alistipes true a6d31249-45f2-e911-a40b-281878345184 0 -- N/A -- true fa68b104-9c99-e911-abc4-000d3a228e9c 0 -- N/A -- true fb68b104-9c99-e911-abc4-000d3a228e9c 1 Anaeroplasmatales true fc68b104-9c99-e911-abc4-000d3a228e9c 2 Bacteroidales true fd68b104-9c99-e911-abc4-000d3a228e9c 3 Bifidobacteriales true fe68b104-9c99-e911-abc4-000d3a228e9c 4 Cerasiococcales true ff68b104-9c99-e911-abc4-000d3a228e9c 5 Clostridiales true 0069b104-9c99-e911-abc4-000d3a228e9c 6 Coriobacteriales true 0169b104-9c99-e911-abc4-000d3a228e9c 7 Desulfovibrionales true 0269b104-9c99-e911-abc4-000d3a228e9c 8 Elusimicrobiales true 0369b104-9c99-e911-abc4-000d3a228e9c 9 Enterobacterales true 0469b104-9c99-e911-abc4-000d3a228e9c 10 Erysipelotrichales true 0569b104-9c99-e911-abc4-000d3a228e9c 11 Flavobacteriales true 0669b104-9c99-e911-abc4-000d3a228e9c 12 Fusobacteriales true 0769b104-9c99-e911-abc4-000d3a228e9c 13 Gastranaerophilales true 0869b104-9c99-e911-abc4-000d3a228e9c 14 GMD14H09 true 0969b104-9c99-e911-abc4-000d3a228e9c 15 Lactobacillales true 0a69b104-9c99-e911-abc4-000d3a228e9c 16 Methanomicrobiales true 0b69b104-9c99-e911-abc4-000d3a228e9c 17 Pasteurellales true 0c69b104-9c99-e911-abc4-000d3a228e9c 18 Pseudomonadales true 0d69b104-9c99-e911-abc4-000d3a228e9c 19 RF32 true 0e69b104-9c99-e911-abc4-000d3a228e9c 20 RF9 true 0f69b104-9c99-e911-abc4-000d3a228e9c 21 Rickettsiales true 1069b104-9c99-e911-abc4-000d3a228e9c 22 Selenomonadales true 1169b104-9c99-e911-abc4-000d3a228e9c 23 Turicibacterales true 1269b104-9c99-e911-abc4-000d3a228e9c 24 Verrucomicrobiales true 1369b104-9c99-e911-abc4-000d3a228e9c 0 -- N/A -- true 1469b104-9c99-e911-abc4-000d3a228e9c 1 Actinobacteria true 1569b104-9c99-e911-abc4-000d3a228e9c 2 Bacteroides true 1669b104-9c99-e911-abc4-000d3a228e9c 3 Bacteroidetes true 1769b104-9c99-e911-abc4-000d3a228e9c 4 Cyanobacteria true 1869b104-9c99-e911-abc4-000d3a228e9c 5 Deferribacteres true 1969b104-9c99-e911-abc4-000d3a228e9c 6 Elusimicrobia true 1a69b104-9c99-e911-abc4-000d3a228e9c 7 Euryarchaeota true 1b69b104-9c99-e911-abc4-000d3a228e9c 8 Fibrobacteres true 1c69b104-9c99-e911-abc4-000d3a228e9c 9 Firmicutes true 1d69b104-9c99-e911-abc4-000d3a228e9c 10 Fusobacteria true 1e69b104-9c99-e911-abc4-000d3a228e9c 11 Gammatimonadetes true 1f69b104-9c99-e911-abc4-000d3a228e9c 12 Lachnospiraceae true 2069b104-9c99-e911-abc4-000d3a228e9c 13 Proteobacteria true 2169b104-9c99-e911-abc4-000d3a228e9c 14 Spirochaetes true 2269b104-9c99-e911-abc4-000d3a228e9c 15 Tenericutes true 2369b104-9c99-e911-abc4-000d3a228e9c 16 Verrucomicrobia true 2469b104-9c99-e911-abc4-000d3a228e9c 17 Candidatus Saccharibacteria true 9ef21880-57ee-e911-a40b-28187834307b 0 -- N/A -- true 2569b104-9c99-e911-abc4-000d3a228e9c 1 Akkermansia muciniphila true 2669b104-9c99-e911-abc4-000d3a228e9c 2 Bacteroides acidifaciens true 2769b104-9c99-e911-abc4-000d3a228e9c 3 Candidatus arthromitus SFB true 2869b104-9c99-e911-abc4-000d3a228e9c 4 Clostridium cochleatum true 2969b104-9c99-e911-abc4-000d3a228e9c 5 Enterobacter arachidis true 2a69b104-9c99-e911-abc4-000d3a228e9c 6 Lactobacillus intestinalis true 2b69b104-9c99-e911-abc4-000d3a228e9c 7 Lactobacillus reuteri true 2c69b104-9c99-e911-abc4-000d3a228e9c 8 Ruminococcus gnavus true 2d69b104-9c99-e911-abc4-000d3a228e9c 9 Selenomonas ruminantium true 2e69b104-9c99-e911-abc4-000d3a228e9c